molecular evolution from a paleo perspective
line decor
line decor


We're hiring!
We're currently seeking to fill two positions: a bioinformatics/computational genomics position and a wet-lab position for someone with experience in tissue culture and genome engineering. Please contact Ed or Beth for more information


Welcome to our lab! The Paleogenomics Lab is a joint venture between two PIs: Beth Shapiro, and Richard (Ed) Green (see Ed's lab website in BME). Our research focuses on a wide range of evolutionary and ecological questions, mostly involving the application of genomics techniques to better understand how species and populations evolve through time. Our groups incorporate experimental and computational approaches. We generate new data and devise new approaches to their analysis, such as tools to assemble genomes and to analyze genomic and population genetic data. Our interests are broad, spanning human evolution, genome assembly and analysis, pathogen evolution, population genetics and the genomic consequences of long-term environmental change.

In the Shapiro lab, a common theme to our research is that it tends to involve some aspect of time. The temporal signal comes from historical information, radiocarbon dates, sampling times (for rapidly evolving viruses), or information from depositional environments. (Check us out in the field!) We combine temporal and genetic data to identify periods of growth, decline, dispersal, and replacement in populations. When possible, we integrate these data with climate and environmental records to try to identify the causative factors behind changes in genetic diversity. We have recently been transitioning from single-locus analyses to working with multi-locus, or even complete genome, data... even for our oldest samples!

In the Green lab, we are interested in genome biology. We are particularly focused on the problems of assembly and comparative genome analysis. Recent and ongoing projects include genome-scale analysis of archaic human genome sequence, the Genomes10K project, and comparative genomics of Crocodilia. We are also interested in applying high-throughput sequencing to address questions in molecular biology including the evolution of gene expression, alternative splicing, and population genetics.



Ancient DNA and Paleogenomics

The discovery that DNA could be extracted and characterised from preserved biological remains motivated an entirely new field in moleular evolution. Using DNA sequences, or even complete genomes, recovered from these remains, it was possible to trace molecular evolutionary processes in species and populations through time, actually watching evolution as it happens. Using DNA techniques coupled with next-generation sequencing technologies, we aim to answer questions such as:

  • How does the genetic diversity of species, populations or communities change in response to climate and other environmental changes?

  • How frequent are demographic events such as local extinctions, population replacements and migration, and how do these affect our ability to accurately recover population history or signals of natural selection?

  • How much are the genetic changes we observe due to species- or population-specific traits, such as habitat use, diet specialization, or population structure?

To address these questions, we use experimental and computational technique such as:

  • DNA extraction, amplification and sequencing (including next-gen approaches)
  • Phylogenetic and population genetic analysis
  • bioinformatic approaches to whole-genome analysis
  • multi-proxy (isotope, DNA diversity, paleobotanical records) paleoenvironmental reconstruction


Extracting and characterizing DNA from fossil remains.

Understanding the evolutionary constraints underpinning diversity and evolution in pathogens

Investigating patterns and processes in genome evolution.