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Abstract
Environmental DNA (eDNA) metabarcoding is an increasingly popular tool for meas-
uring and cataloguing biodiversity. Because the environments and substrates in which 
DNA is preserved differ considerably, eDNA research often requires bespoke ap-
proaches to generating eDNA data. Here, we explore how two experimental choices 
in eDNA study design—the number of PCR replicates and the depth of sequencing of 
PCR replicates—influence the composition and consistency of taxa recovered from 
eDNA extracts. We perform 24 PCR replicates from each of six soil samples using 
two of the most common metabarcodes for Fungi and Viridiplantae (ITS1 and ITS2), 
and sequence each replicate to an average depth of ~84,000 reads. We find that PCR 
replicates are broadly consistent in composition and relative abundance of dominant 
taxa, but that low abundance taxa are often unique to one or a few PCR replicates. 
Taxa observed in one out of 24 PCR replicates make up 21–29% of the total taxa de-
tected. We also observe that sequencing depth or rarefaction influences alpha diver-
sity and beta diversity estimates. Read sampling depth influences local contribution 
to beta diversity, placement in ordinations, and beta dispersion in ordinations. Our 
results suggest that, because common taxa drive some alpha diversity estimates, few 
PCR replicates and low read sampling depths may be sufficient for many biological 
applications of eDNA metabarcoding. However, because rare taxa are recovered sto-
chastically, eDNA metabarcoding may never fully recover the true amplifiable alpha 
diversity in an eDNA extract. Rare taxa drive PCR replicate outliers of alpha and 
beta diversity and lead to dispersion differences at different read sampling depths. 
We conclude that researchers should consider the complexity and unevenness of a 
community when choosing analytical approaches, read sampling depths, and filtering 
thresholds to arrive at stable estimates.
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1  | INTRODUC TION

Environmental DNA (eDNA) metabarcoding is gaining traction as a 
biomonitoring tool (e.g., Deiner et al., 2021; Mejia et al., 2021) and 
for testing hypotheses about biotic and abiotic drivers of changes in 
community composition (Deveautour et al., 2018; Erlandson et al., 
2018). Metabarcoding is used to measure species richness and com-
positional turnover in environmental samples, including changes in 
biodiversity over time (Bálint et al., 2018; Epp et al., 2015; Willerslev 
et al., 2014) and across large geographic ranges (e.g., the sunlit ocean, 
de Vargas et al., 2015; human impact gradients, DiBattista et al., 
2020). This work has led to development of new essential biodiver-
sity variables (Jetz et al., 2019) and bioindicators of environmental 
change (Kissling et al., 2018; Lin et al., 2021). In addition, because 
metabarcoding can be performed simultaneously for multiple loci 
that target different taxonomic groups, the technique can be used in 
applied ecology and habitat management without a priori knowledge 
of community composition. Despite the potential of metabarcoding, 
however, variation in metabarcoding results among biological sam-
ples from the same location, and even among technical replicates 
from the same DNA extract, continues to complicate eDNA experi-
mental design at all stages of sample collection, processing, and data 
analysis (Beng & Corlett, 2020).

Variation among replicates of metabarcoding experiments arises 
due to a combination of biological and technical biases. Biological 
biases reflect differences among taxa in the probability of DNA 
preservation due, for example, to organism size, seasonality, and 
behavior (Beng & Corlett, 2020). Technical biases are introduced 
by experimental choices during field sampling, data generation, and 
bioinformatic analysis. For example, technical biases can be intro-
duced if DNA isolation protocols (Deiner et al., 2018; Dopheide 
et al., 2019), PCR polymerases (Nichols et al., 2017), and metabar-
coding primers (Alberdi et al., 2017; Clarke et al., 2014; Deagle et al., 
2014) preferentially recover taxa with particular physiological traits 
or genetic sequences. Biases may also emerge if taxonomic profiles 
become skewed during PCR due to PCR runaway (Polz & Cavanaugh, 
1998), tag jumping (Taberlet et al., 2018), and overamplification 
(McPherson & Moller, 2006), although the latter can be mitigated 
somewhat by using quantitative PCR (qPCR) to determine the most 
appropriate number of PCR cycles (Murray et al., 2015). Finally, bi-
ases can be introduced by the stochastic nature of PCR amplification 
(Beentjes et al., 2019; Leray & Knowlton, 2017), such that taxa that 
are rare in the DNA extract may become common in the postampli-
fication pool if amplified during an early PCR cycle (Nichols et al., 
2017). As a consequence of these combinations of biases, replicate 
metabarcoding PCRs can provide significantly different taxonomic 
profiles, and these profiles will always be limited to amplifiable mol-
ecules and not, therefore, represent the true biodiversity at a given 
site.

Previous studies have explored some of the reasons why PCR 
replicates often have different taxonomic profiles. A goal of this work 
has been to make generalizable recommendations as to how best to 
avoid or mitigate these potential biases, which has proven difficult. 

Smith and Peay (2014), for example, reported that two of the most 
common measures of biodiversity—alpha and beta diversity—did not 
change with higher numbers of PCR replicates. However, this study 
sequenced pooled rather than individual replicates, such that fewer 
reads were sampled from each replicate as the number of replicates 
increased, which may affect recovery of rare taxa. In a landmark 
study, Ficetola et al. (2015) used species occupancy modeling to de-
termine the most appropriate number of PCR replicates based on 
predicted taxon abundance. In contrast to Smith and Peay (2014), 
this study found that as many as eight replicates should be used if 
the probability of detection of rare taxa was not high. When they 
tested this hypothesis using biological samples, they confirmed that 
using more replicates increased observance of rare taxa and recom-
mended bespoke replication strategies based on biological informa-
tion. However, their replicate design included PCRs from multiple 
extracts rather than a single extract and so did not explicitly address 
differences between true replicates.

Although Ficetola et al. (2015) found that higher numbers of rep-
licates were often important in surveying biodiversity, few studies 
use high replication to date. Nonetheless, studies have continued to 
show the importance of replication in surveying diversity. Alberdi 
et al. (2017), Leray and Knowlton (2017), and Beentjes et al. (2019) 
each performed three replicate PCRs and found that alpha diver-
sity increased as replicates were added, suggesting that replication 
recovers rarer taxa. To test this explicitly, Dopheide et al. (2019) 
performed up to 10 replicate PCRs for each of four metabarcodes 
and estimated species accumulation curves as PCR replicates were 
added. They found that curves began to flatten only after this rela-
tively higher level of replication and predicted that species accumu-
lation would plateau with 10–20 replicates. More recently, Rojahn 
et al. (2021), while exploring the effect of PCR replication for de-
tecting rare species of fish, suggested that high PCR replication is 
not sufficient in some cases to detect rare taxa, in particular where 
common taxa may swamp the PCR and inhibit detection.

The influence of replication when surveying alpha diversity is 
better understood than is its influence on beta diversity—a measure 
of dissimilarity between sites or samples. Smith and Peay (2014), for 
example, observed no influence of the number of pooled replicates 
on beta diversity when sequencing depth was held constant, al-
though their pooled sequencing strategy may have reduced the pos-
sibility that rare taxa would be observed. Beentjes et al. (2019) and 
Hajibabaei et al. (2019) did not pool replicates and therefore prob-
ably recovered more rare taxa given their read sampling depth, but 
also found little to no effect of replication on beta diversity. Instead, 
Beentjes et al. (2019) found that including biological replicates sam-
pled across space and over time was more likely than PCR replication 
to affect beta diversity, probably because increasing the number of 
biological replicates samples additional taxa.

PCR replication is not the only experimental choice that can in-
fluence recovery of rare taxa within a DNA extract, and therefore 
affect measures of alpha and beta diversity. Sequencing read depth, 
or the number of mapped reads to which each PCR amplicon is se-
quenced, may also affect the probability that rare taxa are observed. 
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To test explicitly the influence of sequencing depth, Alberdi et al. 
(2017) compared read depths of ~2500 to ~25,000 reads per rep-
licate and found that alpha diversity increased with sequencing 
depth. Smith and Peay (2014) calculated pseudobeta diversity 
among replicates generated by pooling different numbers of PCR 
replicates before sequencing and calculating diversity of the pooled 
samples at different rarefied depths. They found that dissimilarity 
between replicates decreased with increased sequencing depth and 
concluded that sampling depth was more important than replication 
when recovering biodiversity within a PCR amplicon pool. While 
these results suggest that surveyed biodiversity increases with se-
quencing depth, how sequencing depth influences beta diversity re-
mains underexplored.

Here, we examine how two experimental choices—number of 
PCR replicates and depth of sequencing for each replicate—affect 
the composition and consistency of diversity estimates in metabar-
coding experiments. Because metabarcoding can only recover taxa 
that are present in and amplifiable from a DNA sample, we are not 
addressing the effect of these variables on recovering the complete 
biological diversity of a particular site. Instead, our goal is to provide 
new insights into the reliability and replicability of PCR to recover 
the diversity of amplifiable taxa. We prepare a total of six DNA ex-
tracts from three geographic locations with distinctive biodiversity 
profiles, and, following the conclusions of Dopheide et al. (2019), 
perform 24 individually barcoded replicate PCRs from each extract. 
We sequence each PCR replicate to a target depth of >50,000 reads 
and calculate alpha and beta diversity of replicates. To explore dif-
ferences in potential bias between taxonomic groups, we perform 
this experiment with two commonly used metabarcodes that cap-
ture different phylogenetic biodiversity: the Internal Transcribed 
Spacer (ITS) for Fungi (ITS1) and for Viridiplantae (land plants and 
algae; ITS2). We use standard statistical approaches to explore how 
PCR replication and read sampling depth influence metabarcoding-
based biodiversity estimates, and address explicitly detection of rare 
taxa and inference of community composition.

2  | METHODS

2.1 | Soil collection

We collected two soil samples from three ecologically distinct loca-
tions for a total of six samples. Two were from St Paul Island, Alaska, 
USA (StP.1: arctic tundra along wetlands, 57.136074, −170.82537; 
StP.2: arctic tundra, 57.10577, −170.10563) and four were from sites 
in California, USA: two from Fort Ord Natural Reserve in Marina 
(FO.1, an open sand dune: 36.68448, −121.77731; FO.2, a chap-
arral ecosystem: 36.68301, −121.78071), and two from Younger 
Lagoon in Santa Cruz (YL.1, the basin of a coastal lagoon: 36.950081, 
−122.066756; YL.2, a grassland coastal terrace: 36.949314, 
−122.063575).

We designed field sampling protocols to minimize risk of cross-
contamination. At each site, we wore clean gloves and used a trowel 

sterilized between samples to collect soil from 2″ to 6″ below the 
surface in 50-ml falcon tubes.

2.2 | DNA extraction, amplification, 
sequencing, and taxonomy assignment

We processed each soil sample in the UCSC Paleogenomics Lab 
eDNA room where no PCR amplification occurs, following clean 
room protocols. We homogenized and removed large plant matter 
(leaves and roots) from each sample, and subsampled two 0.25  g 
aliquots of sediment from each sample. We extracted DNA from 
each of the 12 samples using the Qiagen PowerSoil kit and protocol 
(Qiagen), including one negative extraction control without soil. We 
pooled the duplicate extracts for each site to ensure that enough 
DNA extract was available for the replication experiments.

We performed metabarcoding on each of the six extracts using 
the ITS2 region targeting plants (which we abbreviate as PITS) and 
the ITS1 region targeting fungi (FITS). We chose barcodes that were 
(1) among the most commonly used plant (Ankenbrand et al., 2015) 
and fungal (Nilsson et al., 2018) metabarcodes in eDNA; and (2) un-
like other common barcodes that can only identify taxa to higher 
taxonomic levels, these barcodes can identify taxa to genus and 
sometimes species and are therefore less prone to lumping reads 
from different species into a single low-resolution taxon named only 
at the family or order level. For PITS, we used primers described by 
Yao et al. (2010); ITS-S2F and ITS-S3R, and for FITS, we used primers 
from White et al. (1990); ITS5-forward and Epp et al. (2012); 5.8S_
fungi-reverse. The expected amplicon length was 450–480 base 
pairs (bp) for PITS and 200–350 bp for FITS.

For each extract, we used qPCR to assess PCR inhibition and de-
termine the appropriate number of PCR cycles for metabarcoding 
(Murray et al., 2015). We performed qPCR with the Qiagen Multiplex 
PCR Master Mix following manufacturers’ protocol with a spiked 
1:2000 dilution of SYBR Green 1 Dye. In triplicate for each extract, 
we set up a serial dilution of 1:0, 1:1, and 1:3 extract to water pro-
portions of the 2  µl DNA extract and compared qPCR Ct values 
across the dilution series. We observed no inhibition and proceeded 
with undiluted extracts. We determined the optimal number of PCR 
cycles for each extract and primer as the cycle after which the expo-
nential amplification phase ended.

We followed a “2-step” protocol to build amplicon sequencing 
libraries (Nichols et al., 2017) using the same reagent setup as for 
qPCR with the appropriate number of cycles and without SYBR 
Green. For each extract, we performed 24 replicate PCRs with 
PITS and 24 PCR replicates with FITS. We amplified four PITS and 
four FITS PCR replicates from the extraction negative control (no 
sediment) and added two additional PCR negative controls (no ex-
tract) for each marker. We purified amplicon pools with SPRI beads 
(Beckman), then indexed all PCR products individually using Kapa 
Hifi (Roche), following 25 μl manufacturer's protocol, to add eight-bp 
dual indices, followed by a second SPRI bead clean. We used unique 
combinations of dual indices for each PCR replicate. We then 
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quantified the concentration of DNA in the purified amplicon librar-
ies with a Nanodrop (Thermo Scientific) and pooled the libraries by 
equimolar ratios into PITS and FITS pools. We then quantified the 
pools with a Qubit fluorometer (Thermo Fisher) and estimated aver-
age fragment sizes with a fragment analyzer.

To detect index swapping (incorrect index assignment between 
adjacent clusters; van der Valk et al., 2019) during sequencing, we 
amplified the PITS metabarcode from a DNA extract of spiral gin-
ger (Costus pulverulentus), which is native to the neotropics and not 
found in California or Alaska. We amplified the ginger samples sep-
arately from all environmental samples, removing the possibility of 
cross-contamination during amplification. We generated three rep-
licate PCR amplicon libraries from the spiral ginger extract following 
the 2-step protocol described above.

We pooled and sequenced 308 sediment and three spiral ginger 
libraries on an Illumina MiSeq v3 600 cycle kit for 2 × 300 bp reads. 
We targeted 100,000 reads per FITS library and 50,000 reads per 
PITS library, based on the anticipated higher taxonomic richness am-
plified by FITS and higher discard rate of FITS-amplified sequences 
due to the incompleteness of fungal taxonomy databases.

We used the first step of the Anacapa Toolkit (Curd et al., 2019) 
to perform quality control trimming and generate merged and un-
merged forward and reverse amplicon sequence variants (ASVs). 
We then used the second step of the Anacapa Toolkit (Curd et al., 
2019) to cluster ASV tables into taxonomy tables, which employs a 
Bayesian Least Common Ancestor approach to classify taxa above 
statistical support cut-offs (see full description of Anacapa in Text 
S1; Gao et al., 2017). Taxonomy is assigned in the Anacapa pipeline 
with both a local and global bowtie2 alignment of ASV clusters to 
CRUX databases built from NCBI nr/nt data (CRUX database gener-
ation described in Text S1).

2.3 | Data filtration and analysis

We used the PCR and DNA extraction negative controls to detect 
and remove contaminants and the positive ginger control to infer 
the rate of index swapping. We converted taxonomy tables and the 
PCR replicate-associated metadata to phyloseq (v. 1.22.3; McMurdie 
& Holmes, 2013) objects using Ranacapa (Kandlikar et al., 2018). We 
then used the R package decontam (v1.1.0; Davis et al., 2018) to re-
move identified contaminants using prevalence 0.1 between true 
samples and controls. To test for index hopping, we examined the 
species composition of spiral ginger extracts and looked for spiral 
ginger reads in our soil extracts.

To simulate PCR replicate diversity at different read depths, we 
randomly drew different numbers of reads (rarefied) from the de-
contaminated taxonomy tables for each DNA extract. We used the 
rarefy_even_depth() function of phyloseq to rarefy our data at depths 
of every thousand between 1000 and 20,000 (ex. 1k, 2k, 3k…). As 
we increased rarefaction depth, some libraries that were sequenced 
less deeply dropped out of the analysis. Following rarefaction, 
we generated three datasets for each rarified library in which we 

applied minimum read thresholds of 2, 5, and 10. We applied the 
minimum read threshold to each technical PCR replicate individually. 
The taxon richness average of 25 rarefactions per PCR replicate was 
plotted using data filtered with a minimum read threshold of 5.

We tested false positives in PITS data by evaluating the likeli-
hood that taxa detected in a DNA extract are known local taxa re-
ported to the Global Biodiversity Information Facility (GBIF.org). 
We used GBIF data grabs from https://doi.org/10.15468/​dl.yptmrz 
for Younger Lagoon and Fort Ord extracts and used https://doi.
org/10.15468/​dl.7c8huv for St. Paul Island. We performed 1-tailed 
t-tests in R to compare these local survey taxa to PITS taxa.

We generated empirical and extrapolated taxon accumulation 
curves for datasets prior to estimating various Alpha diversity met-
rics using the R package iNEXT (Hsieh et al., 2016). We implemented 
iNEXT with q = 0, datatype = “abundance,” knots = 40, se = TRUE, 
conf = 0.95, nboot = 50 extrapolate to replicates to twice their true 
read sampling depth. We performed outlier tests on extrapolated 
observed richness by identifying points that fall outside values of 
1.5 times the interquantile range. We calculated observed richness, 
the Shannon diversity index (Shannon, 1948), and Simpson index 
(Simpson, 1949) with the vegan package in R (Oksanen et al., 2018). 
While observed alpha diversity considers only taxon presence, the 
Shannon and Simpson's estimators consider both the relative abun-
dance of taxa within a sample in addition to taxon presence. We then 
performed two-sided t-tests and chi-square tests in R stat.

We performed statistical tests for beta diversity, including the 
local contribution to beta diversity (LCBD), using MicrobiomeSeq 
(Ssekagiri et al., 2017) in R, which draws on the adespatial (Dray et al., 
2018) beta.div function. We analyzed community composition using 
unconstrained ordination calculated with the binary Jaccard dissim-
ilarity distance in vegan for datasets rarefied to 1000 and 10,000 
reads and with a minimum read threshold of five reads. We then 
computed the relative sizes of dispersion of PCR replicates per DNA 
extract using the betadisper function in vegan using type “median,” 
bias.adjust  =  TRUE. If groups were significantly different, we also 
performed ANOVA followed by Tukey HSD tests. To determine 
possible causes of dispersion, we used the unconstrained Random 
Covariance Model RC(M) with package RCM (Hawinkel et al., 2019) 
with a dataset rarefied to 5000 reads and with a minimum read 
threshold of five reads. RC(M) was performed for each DNA extract 
separately, and results were plotted to show the taxonomic vectors 
as arrows and PCR replicate samples as dots.

3  | RESULTS

3.1 | Data summary and evaluation of potential 
contaminants and false-positive taxa

We generated an average of 78,809 PITS sequences (range: 9352–
282,579; Table S1) and 88,987 FITS sequences (range: 15,409–
382,888; Table S2) for each of our 288 amplicon libraries (24 PCR 
replicates for each of six extracts, two markers). Following adapter 

https://doi.org/10.15468/dl.yptmrz
https://doi.org/10.15468/dl.7c8huv
https://doi.org/10.15468/dl.7c8huv
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removal and quality trimming, we retained an average of 37,640 PITS 
reads (range: 6148–166,279; Table S1) and 63,436 FITS reads (range: 
12,360–323,310; Table S2) per PCR replicate.

Based on the sequence composition of the three Costus pulveru-
lentus samples, we found no evidence of index hopping between li-
braries during sequencing. We generated 52,675–299,400 reads for 
each of the three ginger samples, all of which were assigned to Costus 
pulverulentus. Additionally, not a single sequence in any environmen-
tal sample was assigned to C. pulverulentus. After prevalence-based 
decontamination, which identified and removed two taxa from the 
FITS dataset (Malassezia restricta and Stereum hirsutum), 1099 unique 
taxa were retained in the FITS results and 353 were retained in the 
PITS results (Table S3), with 278 of the FITS taxa and 50 of the PITS 
taxa represented by only a single read. We assumed single read taxa 
and other low abundance taxa (<10 reads) were potential false pos-
itives and filtered these out with thresholds of 2, 5, and 10 reads 
in downstream analyses. We used traditional observation cross-
validation and an analysis of congeneric species in our results (Text 
S2; Table S4) and found that while some low frequency taxa may be 
false positives, they are not overrepresented as singleton observa-
tions compared to taxa cross-validated as likely true, and therefore 
are not expected to impact downstream results. Following decon-
tamination, most taxa were identified to the species level, although 
some were identified to higher taxonomic levels (PITS: 260 species, 
74 genus, 19 family, 7 order, 2 class; FITS: 875 species, 178 genus, 35 
family, 18 order, 8 class; see Table S3).

3.2 | The influence of read sampling depth on 
alpha diversity

Taxon accumulation curves (Figure 1) show that for all DNA extracts 
and PCR replicates, the PITS curves surpass the inflection point 
where slope begins to decrease (asymptote) at a sampling depth 
under 5000 reads, but the inflection point is less apparent in the 
FITS dataset. Figure 2 shows that increasing the read sampling depth 
from 1000 to 10,000 reads resulted in an average 1.8-fold increase 
in observed alpha diversity for PITS and 2.4-fold increase for FITS 
(Table S5). Shannon and Simpson diversity did not significantly in-
crease with read sampling depth for most extracts in the PITS data-
set but did significantly increase with all FITS datasets (Table S5).

We found the extrapolated variance in richness among PCR rep-
licates of a single DNA extract was high for both metabarcodes and 
that the degree of variation was not consistent across extracts from 
different habitats. Observed richness estimates were rarely normally 
distributed and variance was high, with up to five replicates from the 
same extract being outliers from the mean, and a total of 17 PCR 
replicate outliers across all samples (Table S6). After outlier removal, 
PCR replicate richness at the extrapolated asymptote still exhibited 
multiple fold differences in PITS and standard deviations equivalent 
to up to 30% of the maximum richness of the group (Table 1). We 
found the highest fold differences in observed richness in the PITS 
dataset from YL.1 (Figures 1e and 2a), a site situated within a marine 

lagoon at a location that is regularly inundated with both marine 
water and stream runoff. We observed fewer outlier replicates in ex-
trapolated richness for FITS, with only up to two outliers per group, 
but that variation was high, with standard deviations up to 21% of 
the maximum richness of the group (Table 1). We observed the high-
est fold differences in observed richness in FITS at YL.1 and FO.2.

3.3 | PCR replicates under different read sampling 
depths and minimum read thresholds

To measure the presence of low abundance and possibly unique 
taxa, we calculated increases in alpha diversity as PCR replicates are 
added to a combined dataset, bootstrapping the analysis 100 times, 
and plotting the mean (Figure 3). Intriguingly, we did not observe 
a plateau in species richness even after all 24 PCR replicates were 
included, indicating that this relatively high number of PCR repli-
cates was insufficient to fully sample the diversity of taxa within the 
DNA extract (Figure 3). Generally, increasing read sampling depth 
increased the number of PCR replicates needed to reach saturation, 
and increasing the minimum read threshold lowered the number of 
replicates required to reach saturation (Table 2), where we define 
“saturated” as when the number of taxa increases by less than one 
on average when another PCR replicate is added. While the curves 
were different for each of the DNA extracts, the trend was consist-
ent among them.

Most taxa were present either in only one PCR replicate or in all 
PCR replicates (Figure 4). We found a significant correlation between 
a taxon's within-replicate sequence abundance and its frequency 
across replicates at all read depths and minimum read thresholds 
(Figure 5). Taxa present in all PCR replicates in the 5000 read dataset 
(Figure 5) were at sequence frequency 0.2–36.7% in the FITS dataset 
(average 3.22%) and sequence frequency 0.36–74.68% in the PITS 
dataset (average 13.58%). Taxa present in only a single PCR replicate 
in the 5000 read dataset (Figure 5) were at sequenced frequency 
up to 0.02% (average 0.006%) in the FITS dataset and up to 12% 
(average 0.6%) in the PITS dataset. Increasing the minimum read 
threshold reduced the number of taxa detected in only a single PCR 
replicate, while decreasing the minimum read threshold increased 
the number of taxa detected in a single replicate (Figures S1 and S2).

3.4 | Composition and relative abundance (RA) 
variation across PCR replicates

The most abundant families detected across PCR replicates with 
PITS and FITS were found consistently across replicates, but some 
DNA extracts behaved as outliers in both relative abundance and 
composition (Figure 6), and several PCR replicates were outliers 
in their LCBD (Table S7). At a read sampling depth of 5000 and 
with a five read minimum threshold, LCBD statistics identified 11 
such outlier PCR replicates from the YL.1 extract and two from the 
FO.2 extract for the PITS results, and one outlier replicate from 
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the FO.2 extract in the FITS results (Table S7). Only five of the 
17 outliers observed in extrapolated richness (Table S6) are also 
LCBD outliers.

To explore how read sampling depth and minimum read thresh-
old influence LCBD outliers, we repeated these analyses at all three 
read sampling depths (1000, 5000, and 10,000 reads) with minimum 
read thresholds of two, five, or ten reads (Table S7), and performed 
Chi-squared tests for significant differences among groups. The 
number of PCR replicates identified as LCBD outliers increased 
significantly with higher read sampling depth in the FITS dataset 
(p  =  3.861e−15), but not in the PITS dataset (p  =  .25). We found 
no significant effect of minimum read threshold for either the PITS 
(p =  .71) or FITS (p =  .79) dataset, suggesting that very low abun-
dance taxa represented by fewer than ten reads are not causing 
outliers. For both the PITS and FITS dataset, we found that DNA 

extract itself affected the number of observed PCR outliers signifi-
cantly (both p < 2.2e−16).

3.5 | Variation among PCR replicates in beta 
diversity distance matrices

We evaluated inter- and intra-extract-based estimates of beta diver-
sity in ordinations. At both 1000 and 10,000 read sampling depths, 
and with both PCoA/MDS and NMDS ordinations, PCR replicates 
in both PITS and FITS results clustered by DNA extract within their 
sampling depth group, and extracts from the same geographic area 
sometimes clustered near each other in ordinal space (Figure 7a–d). 
Clustering by read sampling depth persisted with Bray–Curtis esti-
mates of beta diversity where dissimilarity is weighted by evenness 

F I G U R E  1   Rarefaction curves tracking 
observed number of taxa identified 
among PCR replicates as a function of 
read sampling depth for the PITS and 
FITS datasets. Plots are created from 
the average of 25 rarefactions at each 
round thousand sampling depth between 
1000 and 20,000 reads, and a minimum 
read threshold of 5. Each line represents 
one PCR replicate. Termination of a line 
prior to the 20,000 read sampling depth 
denotes missing data. RAR = Retained 
after rarefaction, referring to the number 
of PCR replicates retained in analysis 
following rarefaction to read sampling 
depths of 5000 and 10,000 reads. All 
24 replicates for each of the six DNA 
extracts, and both primers had sufficient 
data at 1000 reads to be included in 
analysis (RAR.1k = 24 for all DNA extracts 
and amplicons)
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of diversity in addition to richness (Bray & Curtis, 1957; Figure S3). 
When we increased read sampling depth in PITS PCR replicates 
was increased from 1000 to 10,000 reads, we saw no difference in 
NMDS ordination. This may be due to PITS having lower complexity 
(composition of rare versus common species) compared to FITS. We 
note that increasing read sampling depth from 1000 to 10,000 reads 
did increase beta dispersion for the YL2 sample in the PITS dataset 
(p-value = .0000256; p values for all other sites > .5) and for all but 
one sample in the FITS dataset (FO1 p = .000038; FO2 p = .000739; 
YL1 p = .000089; YL2 p = <.00001; StP1 p = <.00001; StP2 p not 
significant = .902146).

Dispersion among PCR replicates is significantly different by me-
tabarcode at a 10,000 read sampling depth (p value = .000298), but 
not at 1000 depth (p value  =  .179292). We plotted the observed 
richness onto ordinations using RC(M) and saw that most DNA ex-
tracts did not have a visible observed richness gradient along an or-
dination axis (Figures S4 and S5). However, the two taxa that most 
separate replicates within DNA extract were often low occurrence 
taxa found in only three or four PCR replicates (Figures S4 and S5). 

When we plotted these same RC(M) ordinations with Shannon's H 
measure of alpha diversity, only YL2 in the FITS dataset showed a 
correlation between alpha diversity and dispersion in beta diversity 
(Figures S6 and S7). These analyses support that rare taxa, which 
increase with deeper sequencing depths, destabilize the position of 
samples in ordinations, and that the extent of this destabilization 
likely depends on rare taxa, on the community complexity of the 
metabarcode, and on the chosen ordination method.

4  | DISCUSSION

Both read sampling depth and the number of PCR replicates signifi-
cantly affected our measures of alpha diversity of amplifiable mol-
ecules within an eDNA extract (Figure 2). We observed stochasticity 
among PCR replicates in which and how many low abundance taxa 
were recovered (Figures 4 and 5), as has been shown previously 
using both simulated and real data (Alberdi et al., 2017; Beentjes 
et al., 2019; Dopheide et al., 2019; Ficetola et al., 2015; Kelly et al., 

F I G U R E  2   A comparison of PITS results and FITS results as observed (a and d), Shannon (b and e), and Simpson (c and f) alpha diversity 
measured with read sampling depths of 1000 (circles) and 10,000 (squares), and a minimum read threshold of five. PCR replicates with fewer 
than 10,000 reads drop out from analysis and therefore may only be plotted with 1000 reads. Each dot represents a single PCR replicate
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2019; Piggott, 2016; Smith & Peay, 2014). When we increased read 
sampling depth from 1000 to 10,000 reads, observed alpha diversity 
increased for both the PITS and FITS datasets (Figures 1, 2; Table S5).  
Shannon and Simpson diversity, which incorporate abundance as 
well as presence/absence data, increased significantly with all FITS 
datasets but not for most PITS datasets (Figure 2b, c, e f; Table S5). 
Given these results, it may not be possible to make generalizable 
recommendations about replication strategy or sequencing depth. 
Our experimental data therefore confirm suggestions from simula-
tion studies (Kelly et al., 2019) that diversity measures are sensitive 
to PCR replication and sequencing depth regardless of metabarcode 
choice.

We observed the highest variation in alpha diversity both when 
comparing different sampling depths and between individual rep-
licates at the same sampling depth at the Californian lagoon site 

(YL.1) (Figures 1e and 2) where water and wind carries and depos-
its DNA-containing materials from the surrounding environment. 
Additionally, while species accumulation curves for each site were 
still increasing after data from all 24 PCR replicates were added 
(Figure 3), the timing of saturation of these curves, which we de-
fined as an average increase (after averaging bootstrapped samples) 
of fewer than one taxon with an added PCR replicate, varied signifi-
cantly by site, again with the lagoon site the slowest to approach sat-
uration (Table 2; Figure 3). In general, when we either increased the 
minimum read threshold (the number of reads required for a taxon 
to be counted as present) or increased the sampling depth of each 
PCR replicate, fewer replicates were required to saturate the species 
accumulation curves (Table 2). Together, these results suggest that 
many unique taxa are rare in sequence abundance in each PCR (as 
observed in Figure 5). We cannot test, however, whether these rare 
taxa reflect true rare biodiversity, false positives from polymerase or 
sequencing error, or low amplification efficiency.

False-positive taxa, or taxa incorrectly assigned to a particular rep-
licate, can inflate both alpha diversity, and the number of replicates 
required to saturate species accumulation curves. One source of false 
positives is index hopping, in which sequences are associated with the 
wrong indices due to proximate clustering during sequencing (van der 
Valk et al., 2019). We found no evidence of index hopping among spi-
ral ginger data, suggesting that this was not a major source of noise in 
our dataset. In addition, we cross-validated our PITS data table with 
traditional plant survey data from each site and found no bias in the 
frequency with which a taxon was observed in PCR replicates com-
pared to its detection with the survey (Text S2; Table S4), suggesting 
that many low abundance taxa are not false positives. While spiking 
and cross-validation offer some evidence of authenticity, identifying 
false positives remains a challenge in metabarcoding research (Ficetola 
et al., 2016). Other approaches to detect and remove false positives 
include establishing minimum read thresholds and/or confirming taxon 
presence in multiple replicates, but these approaches also remove true 
positives present at low frequency and impact subsequent analyses 
(Taberlet et al., 2018; Tsuji et al., 2019). We found, for example, that 

TA B L E  1   Variation in extrapolated taxonomic richness among 
PCR replicates after outlier removal

Extrapolated site richness

SITE MIN AVG MAX STDEV

Plant ITS2 (PITS)

FO.1 21.2 31.3 48.3 5.8

FO.2 2.0 32.8 68.3 18.6

YL.1 2.0 63.2 122.8 31.4

YL.2 3.0 34.6 49.8 10.5

StP.1 1.0 24.6 51.4 15.2

StP.2 5.0 28.9 56.2 12.9

Fungal ITS1 (FITS)

FO.1 46.4 87.3 111.2 14.9

FO.2 24.5 75.6 106.7 22.2

YL.1 48.6 106.5 156.1 27.9

YL.2 97.0 149.3 199.8 24.4

StP.1 30.7 51.2 78.4 11.6

StP.2 34.2 50.6 75.2 12.0

F I G U R E  3   Rarefaction curves 
describing the cumulative number of 
taxa detected with increasing number of 
PCR replicates, each sampled to a read 
depth of 5000 reads and using a minimum 
read threshold of five. We chose to plot 
the rarefaction depth at 5000 reads, 
as the exponential increase in taxon 
accumulation had begun to plateau by 
this read depth (Figure 1) and fewer PCR 
replicates had to be removed compared 
to higher read sampling depths. Each line 
reflects the average of 100 bootstraps 
in which the order at which individual 
replicates were added was shuffled
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Number of PCR replicates to reach saturation of taxon accumulation curve

Read sampling 
depth

Minimum 
read cutoff FO.1 FO.2 YL.1 YL.2 StP.1 StP.2

Plant ITS2 (PITS)

5k 2 5 20 17 4 8 10

5 3 17 15 1 8 9

10 2 10 12 1 3 8

10k 2 9 17 >23 5 15 19

5 4 13 19 3 10 18

10 3 9 16 1 9 9

Fungal ITS1 (FITS)

5k 2 >23 >23 >23 >24 >20 19

5 11 7 15 12 12 6

10 9 2 6 9 4 2

10k 2 >13 >18 >17 >21 >10 >16

5 >13 >18 >17 >21 >10 >16

10 >13 4 12 9 7 3

Note: “>X” denotes that greater than the maximum number of replicates X retained after 
rarefaction is needed to suffice this point.

TA B L E  2   Number of PCR replicates 
required to reach saturation of taxon 
accumulation curve, defined as the point 
at which taxon accumulation curve (shown 
in Figure 5) increases by on average 
(calculated with 100 bootstraps) less than 
one taxon with the addition of another 
PCR replicate

F I G U R E  4   Histograms describing the frequency of individual taxa detected across PCR replicates, each sampled to a read depth of 5000 
reads and using a minimum read threshold of five, out of the total 24 replicates. The right-most bar in each plot is a count of taxa present in 
all replicates, while the left-most bar is a count of taxa present in only one replicate
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increasing the minimum read threshold removed some low abundance 
taxa, reducing alpha diversity and the number of replicates required 
to saturate the taxon accumulation curve. However, if singletons are 
removed, as is possible with some software (e.g., BEGUM, Yang et al., 
2021), this may artificially reduce biodiversity or complexity estimates. 
In this study, for example, removing singletons would remove 21–29% 
of the total taxa identified (Tables S1 and S2). Approaches that gen-
erate mock or simulated communities (Ficetola et al., 2015) may help 
differentiate true and false positives, and Procrustes (Gower, 1975) 
simulators may help to estimate the likelihood that false positives im-
pact diversity metrics.

While previous work has described the potential impact of rare 
taxa including false positives on diversity patterns (e.g., Beentjes 
et al., 2019; Dopheide et al., 2019; Nichols et al., 2017), no con-
sensus has emerged as to how many PCR replicates are necessary 
to characterize biodiversity within an eDNA extract. Ficetola et al. 
(2015) estimated from simulated data that eight replicates should 
be sufficient to detect low abundance taxa, but Dopheide et al. 
(2019) predicted 10–20 replicates may be required to detect the 
full biodiversity of some extracts. We observed considerable vari-
ation between sites and barcodes in the number of replicates nec-
essary to reach saturation of species accumulation curves (Table 2; 

F I G U R E  5   Taxon accumulation 
curves by PCR replicate. Each dataset 
comprises 5000 subsampled reads and 
incorporates a minimum read threshold 
of five. Sequence abundance is plotted 
as log-transformed counts of the number 
of reads per PCR assigned to a particular 
taxon, averaged across the PCRs in 
which that taxon is observed. We find a 
significant positive correlation between 
the number of PCR replicates in which 
a taxon is observed (fitted linear model 
results—PITS: p < 2e−16, T = 24.73, 
adjusted r2 = .7324; FITS: p < 2e−16, 
T = 39.91, adjusted r2 = .8219). Each dot 
represents an individual taxon and is 
colored according to DNA extract

F I G U R E  6   Relative abundance of plant and fungal families detected with 5000 reads and a five read minimum threshold. Each bar 
represents one PCR replicate. Only the 20 most abundant families are included here
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Figure 3) and, despite using 24 replicates, most of our rarefaction 
curves and extrapolated species accumulation curves do not sat-
urate. One explanation for this difference between our and other 
studies is our use of qPCR to determine the appropriate number 
of cycles for each sample. Using qPCR in this way makes it less 
likely that our PCR amplicon pools are overamplified, and there-
fore more likely that we retain rare taxa (Kelly et al., 2019; Murray 
et al., 2015). Cumulatively, these results suggest that it may not 
be possible to exhaustively survey biodiversity using eDNA me-
tabarcoding, in particular for taxa, sites, and metabarcodes with 
high species richness and large numbers of potentially rare taxa. 
However, researchers focusing on rare taxa may want to consider 
an approach like qPCR or baited sequence capture with shotgun 
libraries to optimize recovery of rare or poorly amplified taxa.

While recovery of low abundance taxa remains challenging, we 
find that high abundance taxa are consistently recovered, suggest-
ing that low replication may be sufficient to address some biological 
questions, such as site differentiation. Despite some PCR replicates 
being LCBD outliers (Table S7), we find strong evidence of consistency 
among PCR replicates in community composition (Figures 6 and 7) and 
relative abundance estimates (Figures 6 and S1) within a chosen read 
sampling depth (i.e., rarefaction depth). However, dispersion among 
PCR replicates in ordination space differs by ordination metric, me-
tabarcode, and sequencing depth (Figures 7 and S4–S7).

The influence of read sampling depth on beta diversity varies 
by both metabarcode and site, and can influence dispersion among 
PCR replicates in ordination space (Figures 7 and S4–S7). Increasing 
read sampling depth caused replicates from all samples to become 

F I G U R E  7   Ordinations of community composition for PITS and FITS datasets. All plots are with a five read minimum threshold. Each 
point represents one PCR replicate. (a) and (b) PCoA/MDS on Jaccard distances. (c) and (d) NMDS plot on Jaccard distances
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less dispersed in Jaccard PCoA/MDS space, but not in NMDS space 
(Figure 7). Increasing read sampling depth from 1000 to 10,000 reads, 
for example, made the two St. Paul sites indistinguishable in PCoA/
MDS space in the FITS dataset. The St. Paul sites were both dominated 
by one fungal family (Hygrophoraceae), which would have limited the 
detection of shared rare diversity at low read sampling depths.

Finally, we found that outlier PCRs were more commonly amplified 
when extracts/sites have high taxonomic diversity. Outlier PCRs were 
most common in our Younger Lagoon sites, where biodiversity was 
high, and least common in the Alaskan sites, where biodiversity is lower 
(Figures 1 and 2; Table S7). When we increased read sampling depth, the 
frequency of PCR outliers also increased, but only for the FITS datasets 
(Table S7). This may reflect a combination of the higher number of low 
abundance taxa recovered by the FITS metabarcode and the low identifi-
ability of sequences amplified by this barcode compared to others due to 
database limitations. Changing the minimum read threshold, alternatively, 
did not significantly influence the prevalence of PCR outliers (Table S7), 
suggesting that the lowest abundance taxa are not determining outlier 
status. Outliers called by extrapolated richness did not overlap well with 
outliers called by LCBD, confirming our observation that taxa driving dis-
persion in beta diversity were low abundance, but not singletons, which 
inflate alpha diversity estimates (Figures S4–S5). While further work will 
be necessary to understand the precise cause of outlier PCRs, outliers 
are only observable (and removable) if more than two PCR replicates are 
performed. This rationale is often used in experiments that perform three 
PCR replicates per sample (Taberlet et al., 2018), as this experimental de-
sign allows disambiguation between an outlier and nonoutlier replicates.

5  | CONCLUSION

Here, we investigated the impact of PCR replication, read sampling 
depth, and minimum read threshold on estimates of alpha and beta 
diversity from eDNA extracts. At each of our sites and with both me-
tabarcodes, alpha diversity increased with sampling depth and number 
of PCR replicates and decreased with higher minimum read thresh-
olds. We find that 24 replicates, a number higher than the standard 
recommendations in the field, were too few to survey the complexity 
of taxa that are amplifiable using either metabarcode, suggesting that 
the ubiquitous nature of rare taxa and extract unevenness may make 
exhaustively surveying biodiversity from eDNA extracts impossible. 
We also find that, while beta diversity is stable among PCR replicates 
rarefied to the same number of reads, differences in read sampling 
depth led to shifts in ordination space. These shifts can span greater 
distances than two samples collected from different biomes (Figure 7). 
Future research using simulations with natural community biodiver-
sity and with different primers and laboratory assays will be key to 
determining the extent that we can estimate and discriminate false 
negatives and positives, as well as estimate the volatility of alpha di-
versity and beta diversity within extract or among extract or sites. We 
imagine that simulations testing the robustness of patterns in multiple 
analyses, followed by empirical observation of community composi-
tion in natural community positive controls, or wider use of mixes 

such as ZymoBIOMICS Microbial Community DNA Standard II (Zymo 
Research), will help diagnose the vulnerabilities of different methodo-
logical choices to biases from rare taxa.

Together, these results reiterate the importance of considering 
physical and ecological settings as well as the targeted taxa and me-
tabarcode choice as part of experimental design (Andersen et al., 
2011; Ficetola et al., 2015). Experimental parameters not investi-
gated here also affect biodiversity estimates from eDNA samples, 
including DNA extraction method (Deiner et al., 2018; Dopheide 
et al., 2019; Piggott, 2016), the amount of soil processed (Dopheide 
et al., 2019), and metabarcode choice (Alberdi et al., 2017; Duke & 
Burton, 2020). Nonetheless, this work contributes to understanding 
of the complexity of eDNA research and underscores the power of 
simplified experiments that hold some parameters constant while 
allowing others to vary to facilitate development of experimental 
strategies that maximize the impact of eDNA.
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