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Abstract

Effective population size is fundamental in population genetics and characterizes genetic diversity. To infer past population
dynamics from molecular sequence data, coalescent-based models have been developed for Bayesian nonparametric estimation
of effective population size over time. Among the most successful is a Gaussian Markov random field (GMRF) model for a single
gene locus. Here, we present a generalization of the GMRF model that allows for the analysis of multilocus sequence data. Using
simulated data, we demonstrate the improved performance of our method to recover true population trajectories and the time
to the most recent common ancestor (TMRCA). We analyze a multilocus alignment of HIV-1 CRF02_AG gene sequences
sampled from Cameroon. Our results are consistent with HIV prevalence data and uncover some aspects of the population
history that go undetected in Bayesian parametric estimation. Finally, we recover an older and more reconcilable TMRCA for a

classic ancient DNA data set.
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Introduction

Coalescent theory has become a cornerstone of computa-
tional population genetics. First introduced by Kingman
(1982), the coalescent is a stochastic process that generates
genealogies relating a random sample of individuals arising
from a classic forward-time population model (such as the
Fisher—Wright model). The basic assumptions on such an
idealized population are a constant population size, no selec-
tion or migration, nonoverlapping generations, and an equal
propensity among individuals to produce offspring.

Researchers have extended coalescent theory to accom-
modate a range of relaxed assumptions about the population
of interest, including a variable population size (Griffiths and
Tavaré 1994; Donnelly and Tavaré 1995), and serially sampled
data (Rodrigo and Felsenstein 1999). Notably, coalescent-
based inference methods enable estimation of population
genetic parameters from a fixed genealogy and, because ge-
nealogical shapes leave their imprints in the genomes of
sampled individuals, directly from molecular sequence data
(Hein et al. 2005).

One parameter of great scientific interest is the effective
population size over time (often called the demographic
model or demographic function). The effective population
size is an abstract quantity that corresponds to the popula-
tion size under an idealized model of reproduction. The
census population size can be recovered from the effective

population size by appropriate scaling. The utility of the ef-
fective population size is that it provides a measure of genetic
diversity and its fluctuations over time, and acts as a “com-
mon denominator,” allowing researchers to compare popu-
lations arising from different reproductive models. As recent
examples, Campos et al. (2010) reconstruct the demographic
history of musk ox from ancient DNA sequences to examine
the cause of the reduction in their mitochondrial diversity,
Rambaut et al. (2008) uncover trends of genetic diversity of
the influenza A virus and compare them with the seasonal
occurrence of influenza, and Faria et al. (2012) explore past
population dynamics of HIV-1 CRF02_AG gene sequences
sampled in Cameroon.

Computational biologists and statisticians have posited a
number of coalescent-based models to infer population dy-
namics across time. Many of these models (Kuhner et al. 1998;
Drummond et al. 2002) characterize the effective population
size over time using simple parametric functions (examples of
such scenarios include constant size, exponentially growing,
or logistically growing populations). This approach is advan-
tageous in that there are relatively few parameters to be
estimated, and hypothesis testing is convenient. However, a
priori parametric functions may not accurately characterize
important aspects of the population history of a given sample,
and finding an appropriate parametric model can be difficult
and time consuming (Baele et al. 2012). Accordingly,
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nonparametric approaches have become popular in recent
years. These approaches typically center around approximat-
ing the population history with a piecewise constant or linear
function. Some of the first nonparametric models (Pybus et al.
2000; Strimmer and Pybus 2001) provide fast but noisy esti-
mation of population trajectories from a fixed genealogy.
More recent models (Drummond et al. 2005; Opgen-Rhein
et al. 2005; Minin et al. 2008) estimate population trajectories
jointly, along with genealogies and mutational parameters,
directly from sequence data in a Bayesian framework. These
models differ primarily by the priors they place on the effect-
ive population size, and the choice of prior influences not only
the estimated effective population size trajectory but also the
estimated genealogy (in particular, the time to the most
recent common ancestor [TMRCA]). Opgen-Rhein et al.
(2005) and Drummond et al. (2005) use multiple change-
point models to estimate past population dynamics. The
latter model is called the Bayesian Skyline, and Heled and
Drummond (2008) have developed an extension called the
Extended Bayesian Skyline Plot (EBSP) model that incorpor-
ates data from multiple unlinked genetic loci. The model
proposed by Minin et al. (2008), called the Skyride, exploits
a Gaussian Markov random field (GMRF) prior to achieve
temporal smoothing.

Here, we present a novel Bayesian nonparametric model,
named the Skygrid, to estimate effective population size tra-
jectories. Like the Skyride, we parameterize the effective popu-
lation size as a piecewise constant function and employ a
GMREF prior to smooth the trajectory. However, while the
Skyride allows the estimated trajectory to change at coales-
cent times, our improved method does so at prespecified
fixed points in real time. This grants the user extra flexibility
and provides a natural framework to extend the model in the
future to incorporate covariate values. Furthermore, this dis-
tinction enables the Skygrid’s GMRF prior to be independent
of the genealogy, which has important implications for esti-
mation of the TMRCA. Another departure from the Skyride,
and a major advantage of our model, is the ability to base the
estimation on data from multiple unlinked genetic loci. Data
from effectively unlinked loci are rapidly becoming the norm
in the era of next-generation sequencing. Through simulation,
we demonstrate that increasing the number of loci improves
estimation of past population dynamics in terms of both bias
and precision. We also compare the performance of the
Skygrid with the EBSP in two different simulation scenarios
and find that the Skygrid compares favorably. The limited
number of scenarios prevents us from a comprehensive com-
parison of the models, but we can still conclude that the
Skygrid is a competitive alternative to the EBSP. We also
show the improvement of our model over the existing
Skyride and Bayesian Skyline models in terms of estimation
of the TMRCA for single locus data sets arising from three
different demographic models. We analyze a multilocus
data set of CRF02_AG gene sequences sampled in
Cameroon and demonstrate that our nonparametric
approach is able to recover characteristics of the sample’s
population history that are undetected by existing parametric
models.
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New Approaches

The Skygrid is a Bayesian nonparametric model that estimates
N,(t), the effective population size over time, directly from a
sample of multilocus molecular sequence data. Here, t = 0 is
the most recent sampling time and the time t increases into
the past. Thus, N.(0) is the effective population size at the
most recent sampling time and N,(t) is the effective popula-
tion size t time units prior to that. We estimate the effective
population size trajectory as a piecewise constant function
that changes values at pre-specified times called grid points.
The user is allowed to specify the number of grid points M
and a cutoff value K. The grid points are typically equally
spaced between times t = 0 and t = K. The estimated tra-
jectory is constant between grid points and constant for all
times further into the past than the cutoff value K, and the
values it assumes come in the form of a vector of length
M + 1. To smooth the trajectory, we place a GMRF prior
on the vector of effective population sizes. The effective popu-
lation size is estimated jointly along with mutation param-
eterss, a GMRF precision parameter, and genealogies
representing the ancestries of samples at the different genetic
loci. We highly recommend reading the Materials and
Methods section for further details before proceeding.

Results

Simulation Studies

We assess the performance of our model in recovering popu-
lation dynamics in a series of simulation studies. In all our
analyses, we transform the effective population size by taking
the natural logarithm. To generate a synthetic data set, we
first simulate a genealogy assuming one of following demo-
graphic models:

1) Constant population size: log N (t) = 1
2) Exponential growth: log N,(t) = log 150—t
3) Exponential growth followed by a crash:

log 150—t if t>1.5

log(7.4681) +¢ if te 0,15,

log Ne(t) = {

In these models, we measure time in expected mutations per
site. The genealogy has 30 tips sampled at time t = 0. Next,
we use a molecular sequence simulator available in BEAST to
generate sequence data on the tips of the genealogy. We
assume a molecular clock under the HKY85 CTMC model
(Hasegawa et al. 1985) with a transition/transversion rate
ratio fixed to 4.0. To simulate a data set with n unlinked
loci, we repeat this process n times. We consider data sets
with 1, 2, 5, and 10 loci.

We analyze all data sets using the Skygrid model with
29 grid points and a cutoff value of 10. This way, the vector
of effective population sizes has length of 30, equal to the
number of individuals sampled in the data set. Furthermore,
the cutoff value is greater than the root heights of typical
genealogies generated by the coalescent under the aforemen-
tioned demographic scenarios. This goes toward ensuring
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Fic. 1. Constant population size simulation. We present plots of posterior medians (solid black lines) and 95% BCls (gray shading) of the effective
population size N,(t) based on data sets with 1, 2, 5, and 10 loci. The true population size trajectories are depicted by dashed lines. Here and in all
subsequent plots of effective population sizes, we use the log transformation of the population size axis.

that we capture as much of the population trajectory as
possible given the data at hand.

Figure 1 illustrates the results of estimating the effective
population size trajectories of constant size populations. The
bold lines in the plots correspond to posterior medians and
95% Bayesian credibility intervals (BCls) are shown as gray
shaded areas. The dashed lines represent the true population
trajectories. The model does a reasonably good job of recover-
ing the true effective population size trajectory. In each plot,
the BCls increase as we move from the present time to the
past. This is representative of the fact that, for constant popu-
lations, coalescent events become increasingly rare as we
move away from the tips of the genealogy and toward the
root. In other words, there are typically fewer data points
(coalescent events) to inform the estimation near the root
of the tree. We also see that the width of the BCl region
decreases as more loci are incorporated into the analysis.
The shrinkage is most dramatic as we go further back in
time where data are scarce. This is due to the fact that
increasing the number of loci is a very effective way of provid-
ing precious extra information in that time frame, and it
illustrates a major advantage of performing a multilocus
analysis.

Figure 2 shows the results under the exponential growth
demographic model. As is the case with the constant demo-
graphic model, including data from additional loci leads to
more precise estimation. Note that in each plot, following the
trajectory from right to left (from present to past), the pos-
terior median curve is very close to the true effective

population size until it reaches a certain point, after which
the curve follows a constant trajectory. In each plot, the pos-
terior median becomes constant around the time of the
greatest of the root heights of the coalescent trees, which
are used to generate the data. For instance, the greatest
root height of the trees used to generate the 10-loci data
set is 6.07. This flattening occurs because, beyond the greatest
root height, the estimated effective population size is primar-
ily informed by the prior rather than the non-existent data. It
is important when drawing inferences to take note of the
estimated root height to get an idea of where the trajectories
are informative and where they are not.

Figure 3 depicts results in the case of populations that
undergo a period of exponential growth followed by a
period of exponential decline. As in the exponential growth
case, the estimated trajectory is constant (and uninformative)
during the time frame preceding the greatest root height of
the trees used to generate the data. We do not accurately
recover the overall trend of the demographic history in the
one locus plot. Although it does show a clear period of
growth, the decline is rather mild and the time of transition
from growth to decline is imprecise and occurs before the
actual transition time. However, the remaining plots show
that we infer with greater accuracy the transition time and
the rates of growth and decline as we incorporate more loci
into the analysis. These findings illustrate that important
aspects of a population’s demographic history may go un-
detected in a standard one locus analysis, but that increasing
the number of loci can recover them.
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Fic. 2. Exponential growth simulation. See figure 1 for the legend explanation. The times of divergence between the estimated trajectories in solid black
lines and the true trajectories depicted by dashed lines correspond approximately to the greatest root heights of the trees used to generate the data sets
and illustrate the importance of the estimated root height in understanding the range over which the plots are informative.
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Fic. 3. Simulation for a population that experiences exponential growth followed by a decline. See figure 1 for the legend explanation. As in figure 2, the
trajectories are constant (and not informative) for a time range (—10, —7), which precedes the greatest root height of the trees used to generate the
data sets. The plots illustrate the improvement in correctly recovering past population trends by incorporating data from additional loci.
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Table 1. Improvement of Skygrid Performance with Additional Loci.

Table 2. Performance of EBSP Model Relative to Skygrid.

Loci Constant Exponential Crash

Relative Relative Relative

Percent Error Size Percent Error Size Percent Error Size

Loci Constant Exponential Crash

Relative Relative Relative

Percent Error Size Percent Error Size Percent Error Size

1.00 1.00 1.00 1.00 1.00 1.00
0.89 0.31 0.75 0.59 0.80 0.68
0.69 0.16 0.57 0.38 0.71 0.25
10 0.55 0.13 0.46 0.27 0.69 0.19

1 2.88 0.76 123 0.32 0.97 0.20
2 294 1.07 1.66 0.50 1.28 0.47
5 228 0.93 1.90 0.58 1.26 0.73
10 1.45 0.62 241 0.63 1.19 0.76

Note.—Percent error and size, relative to estimates for one locus data sets, in
simulations under the demographic scenarios of constant population size, exponen-
tial growth, and exponential growth followed by a crash.

Let I(I(t) denote the estimated posterior median effective
population size, and N, 5(t) and No;5(t) the 2.5 and 97.5%
quantiles of the estimated posterior effective population size,
respectively. To provide a comparative summary of the per-
formance of our model for data sets with varying numbers of
loci, we use the percent error and size, which are defined as
follows:

T R IN() — Ne(t
Percent error = 100 X —— Mdt,
Rimax 0 Ne(t)

)

and

1 (R | Ngys(t) — Nos(t
Size — _/ [ No7.5(t) 25(1) | d. 3)
RmaX 0 Ne(t)

Here, R is the maximum of the mean estimated root
heights for a given data set and R, is the root height of
the tallest tree used to generate the data set. We use R as the
upper limit in the integrals because the maximum root height
provides an indication of how far back in time the data are
informative. Dividing by R, adjusts the metrics to ensure
they provide measures of bias and variance that are not
inflated for data sets that are informative for longer time
spans.

Our results based on 100 simulated data sets are summar-
ized in table 1. We report relative percent error, which we
obtain by dividing the mean percent error of 100 simulated
data sets for a given number of loci by the mean percent error
of 100 simulated one-locus data sets. We also report the
relative size, which is defined analogously.

Under all three demographic models, the size and percent
error decrease as the number of loci increases. In other words,
multilocus data improve estimation in terms of both bias and
precision.

To compare the Skygrid with the EBSP, we analyze the
same simulated data sets generated for the Skygrid perform-
ance analysis using the EBSP. We compare these two models
since they are, to our knowledge, the only coalescent-based
nonparametric Bayesian models that infer population dy-
namics from multilocus data. In table 2, we report the relative
percent error and size, where we define the relative value of
each metric as the mean value over 100 simulations based on
EBSP analysis divided by the mean value over 100 simulations
based on the Skygrid analysis. The Skygrid almost always

Note.—Percent error and size based on EBSP analyses, relative to estimates based on
Skygrid analyses, in simulations under the demographic scenarios of constant popu-
lation size, exponential growth, and exponential growth followed by a crash.

outperforms the EBSP by a wide margin in terms of percent
error. The EBSP analyses generally have smaller sizes, but in
light of the much greater percent error, this extra “precision”
is not especially meaningful. Indeed, an investigation of 95%
BCI regions and the proportion of the true trajectory that
each BCl region covers reveal that the Skygrid outperforms
the EBSP 3-fold for the exponentially growing populations
and by 6-19% for the constant size populations. The
Skygrid thus emerges as a better overall choice in common
situations comparable with our simulation set-up.

Performance and Mixing

In all simulation studies, we simulate MCMC chains of length
set to 20 million steps and sub-sample the chain every 1,000
states, after discarding the first 10% as burn-in. To confirm
sufficient mixing within the MCMC chain, we examine the
effective sample size (ESS) scores of the model parameters
and note that all ESS scores for effective population size par-
ameters are more than 1,000.

The inclusion of data from additional loci adds to the
complexity of the model and increases the run time necessary
to achieve sufficient mixing. To investigate the computational
cost of increasing the number of loci in a Skygrid analysis, we
examine the ESS scores per unit time for effective population
size parameters. We conduct all analyses on a 2.93 GHz Intel
Core 2 Duo processor with 4 GB of RAM. ESS per minute for
data sets with 1, 2, 5, and 10 loci have respective ranges of
126.9-493.1, 124.8-271.5, 69.2-245.7, and 41.3—-137.4 across
all ESS parameters. These findings suggest that, while increas-
ing the number of loci in a Skygrid analysis necessitates longer
run times, the marginal cost is not especially high. For in-
stance, a 10-fold increase in the number of loci does not
require a 10-fold increase to achieve the same ESS. The feasi-
bility of Skygrid analyses of data sets with large numbers of
loci is encouraging in light of the increasing availability of
multilocus data sets and the improvements they confer
upon inference of past population dynamics.

Choice of Cutoff Values and Grid Points

Because it is up to the user to specify the cutoff value K and
number of grid points M, it is natural to wonder how this
choice will influence inference. A natural desired feature of
the cutoff value is that it be sufficiently greater than the root
height of the unobserved coalescent process, thereby allowing
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Fic. 4. Root height estimate sensitivity. Here, we compare the estimated
root height for a simulated exponential growth data set using different
cutoff values. The black dots represent posterior mean root height es-
timates, and the shaded gray rectangles represent the 95% BCls. The
dashed line indicates the true root height of 27.1.

the analysis to capture as much information about the popu-
lation dynamics as the data allow. An initial choice of a cutoff
value can be informed by prior knowledge or a time frame of
scientific interest. Otherwise, we recommend performing a
preliminary analysis and examining the estimated root height
to determine the need to possibly adjust the cutoff.

To investigate the sensitivity of the estimated root
height to different choices of cutoff values, we consider a
100-taxa data set simulated under an exponential growth
demographic  model  with  demographic  function
log N(t) = log 150 — . We assume a molecular clock
under the HKY85 CTMC model (Hasegawa et al. 1985)
with a transition/transversion rate ratio fixed to 4.0. The
true root height of the coalescent tree used to generate the
data is 27.1. We estimate the root height under our model
using cutoff values of 2,4, 6, ..., 28. We adjust the number
of grid points in each case so that the grid points remain 0.2
units apart. The results are summarized in figure 4. The black
dots represent posterior mean root height estimates and are
connected by a dotted line, whereas the true root height is
marked by a dashed line. The shaded gray rectangles show the
coverage of the 95% BClI for each cutoff value.

As we see, increasing the cutoff value generally leads to
more precise and less biased estimates of the root height.
Because low cutoff values force the estimated population
size to be constant for the bulk of the demographic history,
this illustrates the advantage, when estimating the root
height, of using a flexible model that allows the population
trajectory to change over time. At the same time, the poster-
ior mean estimated root heights and 95% BCls using relatively
low cutoff values are not especially far off from the estimates
found using a cutoff value greater than the true root height.
This is convenient because it allows the user to make an
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informative adjustment of the cutoff value for a subsequent
analysis if the current cutoff value turns out to be too low. In
our example, low cutoff values lead to overestimates of the
root height because constant size populations generally have
greater root heights than exponentially growing populations.

In our analysis of cutoff values, we observe another nice
feature of the Skygrid, in addition to the generally low root
height estimate sensitivity: The choice of cutoff value does not
have any notable impact on the trajectory of the estimated
effective population size prior to the cutoff value.

With respect to the number of grid points, it is advisable to
specify enough points at different times to capture any pos-
sible population trends. Our default suggestion is to specify
one less grid point than the number of taxa (so that the
length of the population size vector will be the same as the
number of taxa) and space grid points evenly. This spacing
gives us an equal opportunity to detect trends at different
times, and the resolution coincides in a rough sense with the
amount of available data. However, a major advantage of our
model is the ability to set grid points at any desired time. The
user has the flexibility, for instance, to concentrate grid points
in time intervals in which the data are more informative or in
regions in which prior beliefs suggest rapid changes.

Estimation of Time to Most Recent Common
Ancestor

It is often of interest to estimate the TMRCA, also known as
the root height, from genetic sequence data. Although the
Skygrid is in a sense a generalization of the Skyride, the
Skyride’s GMRF prior conditions on the genealogy whereas
the Skygrid’s does not, and this can affect TMRCA estimation.
We wish to compare the performance of the Skygrid, Skyride,
and Bayesian Skyline models in estimating the TMRCA from
one-locus data sets. We consider the one-locus case because
the Skyride is not equipped analyze multilocus data sets. We
conduct a series of simulations under three different demo-
graphic scenarios. First, a constant population with demo-
graphic  function logN,(t) =1, and second, an
exponentially growing population with demographic func-
tion log N¢(t) = log 150 — t. The third demographic scenario
is a four-epoch piecewise exponential model motivated by
the Beringian bison data set discussed later.

To analyze a data set of 152 mtDNA control region se-
quences from ancient bison in Beringia (Siberia, Alaska, and
north-western Canada) and central North America, Shapiro
et al. (2004) implement a coalescent-based two-epoch para-
metric demographic model in BEAST. The model is charac-
terized by two phases of exponential growth at different rates,
and a transition time between the phases. Their analysis sug-
gests an initial phase of exponential growth followed by a
period of exponential decline, with a transition time approxi-
mately 32-43 ka BP (where 1 ka BP is 1,000 years before
present). The estimated TMRCA has a posterior mean of
136 ka BP with a 95% BCl of (111, 164 ka BP).

We analyze the same data using the Skyride as well as our
Skygrid model (with 150 grid points and a cutoff of 150 ka BP).
Both analyses suggest a period of sustained population
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growth, peaking at about 35-45 ka BP, followed by a period of
decline bottoming out approximately 10 ka BP, and then a
postbottleneck recovery. The postbottleneck recovery, which
is not identified by the two-epoch parametric model, is also
observed in a nonparametric analysis by Drummond et al.
(2005) using the Bayesian Skyline. Although all of the non-
parametric analyses uncover similar demographic histories,
the same cannot be said for estimating the TMRCA. The
Skyride gives us a posterior mean TMRCA of 101.45 ka BP
with a 95% BCI of (87.12, 117.5 ka BP), the Bayesian Skyline
gives us a posterior mean TMRCA of 133.56 ka BP with a 95%
BCl of (103.86, 167.63 ka BP), and the Skygrid yields a posterior
mean of 130.39 ka BP with a 95% BCl of (99.99, 159.54 ka BP).

The Skygrid and Bayesian Skyline estimates are similar to
those of Shapiro et al. (2004), whereas the Skyride analysis
paints a substantially different picture. The Skyride results do
not agree with the North American fossil record; bison are
known to have been present in Alaska during the last inter-
glacial interval (150-100 ka BP). To further investigate which
estimates are closer to the truth, we test the Skygrid, Bayesian
Skyline, and Skyride on simulated data sets that are similar to
the bison data set. We generate the data sets using evolution-
ary parameter values similar to the estimated values from the
bison data set along with a four-epoch demographic model
(which we refer to as the “Ancient DNA” model) that grows
and declines exponentially at approximately the same times
and rates as the estimated trajectory using the Skygrid model
on the bison data.

For each of the three demographic scenarios, we simulate
100 one-locus genetic sequence data sets and estimate the
root heights using the three different models. To provide a
comparative summary of the performance, we define the
percent error as follows:

Percent error =
| Estimated Mean TMRCA-True TMRCA |
X .
True TMRCA

100

(4)

Also, we define the size of each estimate as the length of the
95% BCI. Finally, we monitor the percentage of BCls that
contain the true root height as a measure of frequentist
coverage, a useful property for inference tools that will be
applied to many independent data sources. Ideally, estimated
coverage should approach its nominal level; 0.95 in this case.

The simulation results are presented in table 3. The three
different models exhibit similar performance in the constant
and exponential growth demographic scenarios. The Skygrid
performs slightly better than the other two models in the case
of exponentially growing populations. For the constant popu-
lation simulations, each of the three performance metrics
identifies a different model as the best, and none of the
models dramatically outperforms the others in any way. In
the ancient DNA demographic scenario, the Skygrid outper-
forms both models. The contrast with the Skyride in terms of
relative error and frequentist coverage of the true root height
is especially dramatic. For each of the three demographic
situations, the Skygrid model performs as good or better

Table 3. Estimation of Time to Most Recent Common Ancestor.

Model Demographic Percent Error Size Frequentist
Coverage
Skyride  Constant 3.99 0.77 89
Skyline  Constant 3.69 0.79 94
Skygrid  Constant 3.66 0.79 92
Skyride  Exponential 0.99 0.26 92
Skyline  Exponential 1.02 0.26 91
Skygrid  Exponential 0.99 0.26 94
Skyride  Beringian bison 69.79 24,621.74 1
Skyline  Beringian bison 9.90 77,742.94 96
Skygrid  Beringian bison 9.29 74,634.97 96

Note—Size is measured in years for Ancient DNA demographic and in substitutions
per site for other demographic models. Here, Skyline refers to the Bayesian Skyline.

than the Skyride and Bayesian Skyline. Our simulation studies
thus offer support for the Skygrid as the best of the three
models for estimating the TMRCA from populations with a
variety of demographic histories.

Population History of HIV-1 CRF02_AG Clade in
Cameroon

Circulating recombinant forms (CRFs) are genomes that
result from recombination of two or more different HIV-1
subtypes and that have been found in at least three epide-
miologically unrelated individuals. CRF02_AG is globally re-
sponsible for 7.7% of HIV infections (Hemelaar et al. 2011),
but HIV/AIDS surveillance studies indicate that it accounts for
approximately 60% of infections in Cameroon (Brennan et al.
2008).

Faria et al. (2012) investigate the population dynamics of
the CRF02_AG lineage through a multilocus alignment of 336
gag (HXB2: 1255-1682), pol (HXB2: 4228-5093), and env
(HXB2: 7890-8266) CRF02_AG gene sequences sampled be-
tween 1996 and 2004 from blood donors from Yaounde and
Douala (Brennan et al. 2008). Given the high rate of recom-
bination in HIV, it is common to assume these three genes are
unlinked. Following this assumption, Faria et al. (2012) use
BEAST to conduct a multilocus analysis employing a para-
metric piecewise constant-logistic demographic tree prior
model. Their analysis suggests a period of exponential
growth of the viral effective population size until the mid
1990s at which point the growth levels off. The estimated
origins of the most recent common ancestors for the env,
gag, and pol sequences are 1967.6 (95% BCl: 1962.4, 1972.4),
1967.6 (95% BCl: 1962.5, 1972.5), and 1968.1 (95% BCl: 1962.8,
1972.8), respectively.

We perform a multilocus Skygrid analysis of the same data
with 50 grid points and a cutoff value of 50 years. Figure 5
depicts the resulting estimated posterior median log effective
population size along with estimated HIV prevalence counts
in Cameroon from 1990 to 2004 (UNAIDS/WHO 2008). Like
the parametric multilocus analysis, the Skygrid analysis points
to a period of exponential growth in effective population size
from 10 to 30 years prior to the most recent sampling time. It
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Fic. 5. Population history of HIV-1 CRF02_AG clade in Cameroon. The curve represents the estimated median log effective population size estimated
from a multilocus alignment of 336 gag, pol, and env sequences sampled between 1996 and 2004. The bars represent estimated HIV prevalence counts

in Cameroon.

also vyields similar results regarding the origin of the HIV-1
CRF02_AG clade. TMRCAs for the env, gag, and pol se-
quences have estimates of 1965.2 (95% BCl: 1959.6, 1970.1),
1967.3 (95% BCl: 1962.8, 1971.3), and 1969.3 (95% BCl: 1963.1,
1974.1), respectively. However, in contrast to the parametric
multilocus analysis, the Skygrid analysis suggests a dip in ef-
fective population size over the 5 years prior to the most
recent sampling time. This finding is supported by the drop
in HIV-1 prevalence in Cameroon from 2000 to 2004, but is
not detected by the parametric multilocus analysis due to the
a priori constraints on the shape of the effective population
size trajectory imposed by the logistic-constant demographic
model prior. It should be noted that the CRF02_AG popula-
tion in Cameroon will have some gene flow with the world-
wide population of CRF02_AG, and this is not modeled in our
Skygrid analysis or the earlier parametric analysis. This may
account for some of the discordance between the inferred
population sizes and the Cameroon prevalence counts.

Prior Sensitivity

The GMRF smoothing prior we place on the vector y of log
effective population sizes informs our model about the
smoothness of the trajectory. The precision parameter T gov-
erns the level of smoothness. There is usually little a priori
knowledge regarding the smoothness of the effective popu-
lation size trajectory, and in all of our examples we assign 7 a
relatively uninformative gamma prior. To investigate the sen-
sitivity of our results to different hyperprior parameter values,
we follow the suggestion of Minin et al. (2008) and analyze the
Beringian bison data set with five different values of «: 0.001,
0.002, 0.005, 0.01, and 0.1, leaving 8 unchanged. These choices
correspond to increasing prior means of 1, 2, 5, 10, and 100,
respectively. Table 4 presents the estimated posterior means
and 95% BCls of t. The results demonstrate that the posterior
distribution of 7 is robust to alterations of the hyperprior
parameter «. Moreover, they suggest that the data contain
sufficient information to estimate .
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Table 4. GMRF Precision Sensitivity to Prior.

Prior Mean Posterior

Mean 95% BCl
1 5.27 0.58-11.82
2 5.37 0.63-11.60
5 5.19 0.50-11.42
10 5.12 0.59-11.68
100 5.40 0.76-12.50

Note.—Posterior estimates of precision parameter 7 corresponding to different
choices of prior mean. We use the Beringian bison data.

Discussion

The Skygrid is a powerful, flexible new model for nonpara-
metric coalescent-based inference of past population dy-
namics from molecular sequence data. It incorporates a
GMRF smoothing scheme similar to that of the Skyride,
and provides smooth and realistic estimates of demographic
histories. Like the Skyride, the Skygrid model does a fairly good
job of recovering essential features of simulated data based on
standard parametric coalescent models.

However, the Skygrid is an improvement over the Skyride
in a number of important ways. It allows for estimation based
on multilocus data, yields improved TMRCA estimation, and
it gives the user additional flexibility.

Molecular sequence data sets from effectively unlinked loci
are becoming increasingly common thanks to lower DNA
sequencing costs. Accordingly, there is a need for multilocus
statistical approaches to reap the benefits. The Skygrid pro-
vides estimates of effective population size trajectories based
on samples from several different genetic loci with the same
demographic histories. One of the primary difficulties in
coalescent-based approaches is that most of the coalescent
events in the reconstructed genealogy usually occur in a short
time span. During the long periods of time in which few
coalescent events occur, there are not much data to infer
the population dynamics. This problem is mitigated to a
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certain extent by increasing the sample size, but the add-
itional coalescent events tend to occur in a small stretch of
time. Increasing the number of loci more effectively provides
extra information during the long stretches of time with few
coalescent events (Felsenstein 2006). We demonstrate
through a series of simulations that incorporating data
from additional loci yields more precise and less biased esti-
mates of past population dynamics. We also note that multi-
locus data are especially helpful in improving estimation
during time periods for which single locus data are not very
informative.

We compare our Skygrid model with existing multilocus
approaches. As seen in the analysis of HIV-1 CRF02_AG gene
sequences sampled from Cameroon, our nonparametric ap-
proach enables detection of a decline in the effective popu-
lation size that is supported by HIV-1 prevalence data. This
aspect of the population history went unnoticed in a multi-
locus analysis employing a parametric constant-logistic
demographic tree model prior. The only other currently avail-
able nonparametric Bayesian model that enables estimation
of past population dynamics from multilocus data is the EBSP.
We analyze simulated data sets with the Skygrid and the EBSP
and find that the Skygrid performs more favorably.

Bayesian nonparametric models for inference of popula-
tion histories typically estimate genealogies and mutation
parameters jointly along with effective population size trajec-
tories. The different priors placed on the effective population
size that distinguish these models can affect estimation of
quantities other than the population history, notably the
TMRCA. In simulation studies to explore TMRCA estimation,
we consider data sets generated from a variety of different
parametric demographic scenarios. These include typical con-
stant and exponential growth demographic models, as well
as a more complicated piecewise-exponential model moti-
vated by a data set of ancient DNA from Beringian bison.
Considered along with the Skyride and Bayesian Skyline
models, the Skygrid emerges as the best overall choice for
TMRCA estimation in these examples.

Unlike the Skyride, the Skygrid allows the user to specify
the spacing of points where the effective population size of
the estimated trajectory can change. This flexibility can be
especially convenient for future extensions of the model,
which incorporate covariate values which must, necessarily,
be measured at fixed times. We anticipate that such exten-
sions will lead to further improvement in estimation of the
effective population size over time and, for instance, enable
statistical testing of environmental effects on population
histories.

Materials and Methods

Coalescent Background

Coalescent theory was first developed by Kingman (1982).
Considering a random population sample of n individuals
arising from a classic Fisher—Wright population model of con-
stant size N,, Kingman developed a stochastic process called
the coalescent to generate genealogies relating the sample.
The process begins at a sampling time t = 0 and proceeds

backward in time as t increases, successively merging lineages
until all lineages have merged. The merging of lineages is
called a coalescent event and there are n — 1 coalescent
events in all. Let t, denote the time of the (n — k)th coales-
centeventfork = 1, ,h — 1andt, = 0 denote the sam-
pling time. Then for k=2, ...,n the waiting time
Wi = tx_1 — ti is exponentially dlstrlbuted with rate k(k 1).
Griffiths and Tavaré (1994) provide a generalization of the
coalescent that allows for the effective population size
N, = N,(t) to change over time. Here, N,(0) is the effective
population size at the sampling time, and N,(t) is the effective
population size t time units before the sampling time. In this
case, the waiting time wy is given by the conditional density

kk—1) [_/Wk“kk(k D, t]
Wewe+t) Pl ), 2N
(5)

Taking the product of such densities yields the joint density of
intercoalescent waiting times, and this fact can be exploited
to obtain the probability of observing a particular genealogy
given a demographic function. Here, we consider a piecewise
constant demographic function that changes values at
pre-specified times.

P(wi | ti) =

Piecewise Constant Demographic Model

We start by assuming there are m known genealogies.
Letg = (g1,&2, - - - »&m) be a vector of genealogies represent-
ing the ancestry of populations with the same effective popu-
lation size N,(t), where the time t increases into the past.
We assume a priori that the genealogies are independent
given N,(t). This assumption implies that the genealogies
are unlinked which commonly occurs when researchers
select loci from whole genome sequences or when recom-
bination is very likely, such as between genes in retroviruses.
Let M denote the number of points we desire for a
fixed-time grid, and let K be a positive real cutoff value.
Then the temporal grid points xi, ...,xy are
X1 :ﬁ,xz =2X ﬁ, ..., Xy = K. Here, we assume the
grid points are equally spaced, but the model easily extends
to arbitrarily spaced grid points.

We estimate the effective population size as a piecewise
constant function that changes values only at grid points. The
cutoff value is the time furthest back into the past at which
the effective population size changes. Notice that for all times
t > K further into the past than the cutoff value,
Ne(t) = Ne(K). Let 6 = (01, ..., 00 +1) be the vector of ef-
fective population sizes. Here, N,(t) = 6 for x,_1 < O < Xy,
k=1, ...,M where it is understood that x, = 0. Also,
Ne(t) = 9/\/|+1 for t > Xp-

To construct the likelihood of genealogy i, let t, be the
most recent sampling time and tmrca, the TMRCA (also
referred to as the root height of genealogy i). Let x,, denote
the smallest grid point greater than at least one sampling time
in the genealogy, and xg, the greatest grid point less than at

least one coalescent time. let  uy = [Xk_1,Xk)
k = o+ 19 RS [311 uia; = [t0;9xlx,-]i and ui(ﬂ; +1) —
[Xg,, tmrea, - For each uy, we let ty, j =1, , I', denote
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the ordered times of the grid points and sampling and co-
alescent events in the interval. With each tj, we associate an
indicator ¢; which takes a value of 1 in the case of a coales-
cent event and 0 otherwise. Also, let v; denote the number of
lineages present in the genealogy in the interval [ty;, i+ 1.
Following Griffiths and Tavaré (1994), the likelihood of obser-
ving an interval is

P(ui | 6) = 1_[ Vi(vig — 1)

1<j<rc =1 29‘(

re—1 ) L
1_[ exp|:_ Vk}(ij

=1

(6)

D(teg+1) — teg)
20,

fork =« ..., B+ 1.

Let P, (uj | 6) denote F‘(u,,< | Bx) except with any TMRCA
factors of the form 24—~ ka L) replaced by A 2 ) —; this is for
the purpose of computmg the probablllty of a genealogy,
where the specific branches of a tree which coalesce matters.
Then

Bi+1

[ ] Petuic160). (7)

k:()t;

P(gi|0) =

We introduce some notation that will facilitate the derivation
of the Gaussian approximation in the next section. If cj de-
notes the number of coalescent events, which occur during
interval uj, we can write

Bi+1 Cik
1 SSik
“T1(;) »o|-5] @

k:[)l;

P(gi |0)

where the SSj, are appropriate constants. Rewriting this ex-
pression in terms of 3, = log(6y), we arrive at

Bi+1

1_[ e~ 7k exp[—SSye” *]
k=a;

Bi+1

= 1_[ exp[—yxcik — SSie™ .

k=a;

P(gily) =
)

Assuming conditional independence of genealogies, the like-
lihood of the vector g of genealogies is

Pely)=]]Paily (10)
m Bi+1

— 1_[ 1_[ exp[—yici — SSie™ "] (1)
i=1 k=q;

M1
= eXP|:Z [—veck — SSke_yk]], (12)

k=1

where ¢ =Y " ck and SS=D> 1", SSi; here
cik =SS = 0 if k¢ [o, Bi + 1].

To incorporate the prior assumption that effective popu-
lation size changes continuously over time, we put the
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following GMREF prior on y:

P(y | 7) oc 7 exp[—gz(yf+1 - y,»)z}. (13)

This prior posits that differences between adjacent elements
of y are normally distributed with mean 0 and estimable
precision t, drawing motivation from a Brownian diffusion
process. Let Q be a square matrix of dimension M + 1 with
entries Qj = —1 for j=i+1 and j=i—1, Q; =2 for
i=2,....Mand Q; =1 for i=1,M+ 1. Then, we can
write

P(y ) o« 22 exp| == Yy . (14)
Finally, we assign 7 a gamma prior:
P(7) o T e T, (15)
This yields the following posterior distribution:

P(y,T|8) < P(g|y)P(y | DP(7). (16)

It should be noted that the GMRF prior does not inform
the overall level of the estimated effective population size, just
the smoothness of the trajectory. The degree of smoothness is
determined by the precision t. Researchers typically do not
have any prior knowledge about the smoothness of the ef-
fective population size trajectory, and in such cases it is ap-
propriate to use relatively uninformative priors. Accordingly,
we choose « = 8 = 0.001 in our examples, giving T a prior
mean of 1 and variance of 1,000.

Markov Chain Monte Carlo Sampling Scheme

We use a block-updating Markov chain Monte Carlo sam-
pling scheme (Knorr-Held and Rue 2002) to approximate the
posterior given in Equation (16). First, consider the full con-
ditional density

P(y|1.8) < P(g|y)P(y|T)

M+1
:
o — ik — SSge 7 | TM/? -y
EXP|:Z( YkCk — SSke )} exp| —- VY Qy

k=1

M+1
/2 exp |:— -Y'Qy — Z (Yxek + SSke™ ”k)]
(17)
Let  hi(vk) = (yiex +SSke™ 7). We can approximate
each term hi(yx) by a second-order Taylor expansion
about, say, yj:
N N PO N
he(v) ~ (i) + h (V) (vie — vi) + ihZ(Vk)(Vk — %)’
— 1 ~AD ~
= SSe™ 5 Ve + Y+ 1
+ [Ck — SSke_fk — SSke_’;k)?k] Yk
1 R
+ |:§ SSke_Vk]y,f.

(18)
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This yields the following second-order Gaussian approxima-
tion:

1 .
P(y|7.8) oc ™% exp [— > ¥'[Q + Diag(SSe™ )]y

M+1 ) ) (19)
- (ck — SSke™ 7 — SSke™ Py |
=1

where Diag(+) is a diagonal matrix.

Now suppose we have current parameter values
(™, ™). First, we generate a candidate value for the pre-
cision, T = T\"f, where f is drawn from a symmetric pro-
posal distribution with density P(f) o< f + } defined on
[1/F, F]. The tuning constant F controls the distance between
the proposed and current values of the precision. Next, con-
ditional on ¥, we propose a new state y* using the afore-
mentioned Gaussian approximation to the full conditional
density P(y™ | T*,g). In the Gaussian approximation, we
center the Taylor expansion about a point 7 obtained itera-
tively by the Newton—-Raphson method:

Ve = Voo = [Ef )] [df (v (20)
with ¥ = Y. Here

M+1

f =3/ = 3 marsse . @Y

and
df(y) = —Y'Q—[c1 —SS1e77", ..., Cms1 — SSm+ 1€ "M 1],
(22)
and
d’f(y) = —Q — diag[SSye *]. (23)

Finally, the candidate state (t*, y*) is accepted or rejected in
a Metropolis—Hastings step.

Incorporation of Genealogical Uncertainty

In our development thus far, we have assumed the genealo-
gies g1, ..., gm are known and fixed. However, in reality we
observe sequence data rather than genealogies. We can think
of the aligned sequence data Y = (Y4, ...,Y),) as arising
from continuous-time Markov chain (CTMC) models for mo-
lecular character substitution that act along the hidden gen-
ealogies. Each CTMC depends on a vector of mutational
parameters Q;, that include, for example, an overall rate multi-
plier, relative exchange rates among characters and across-site
variation specifications. We let Q = (Qy, ..., Q). We then
jointly estimate the genealogies, mutational parameters, pre-
cision, and vector of effective population sizes through their
posterior distribution

P(g. Q.. ¥ Y) oc | []P(YilgnQ) [PQPE| y)P(y | D)P().

i=1

(24)

Here, the coalescent acts as a prior for the genealogies, and we
assume that Q and g are a priori independent of each other.
Hierarchical models are however available to share informa-
tion about Q among loci without strictly enforcing that they
follow the same evolutionary process (Edo-Matas et al. 2011).

We achieve joint estimation by integrating the block-
updating MCMC scheme for the fixed-trees case into the
software package BEAST (Drummond et al. 2012). We plan
to provide a user-friendly interface to this joint model in the
next public release of BEAUti (Drummond et al. 2012), a
graphical user interface application for generating BEAST
model and data description files. In the meantime, we wel-
come users to exploit this multilocus model in the develop-
ment branch of the BEAST source code repository (http://
beast-mcmc.googlecode.com/svn/trunk). Examples of XML
specification for the model are available at http://beast.bio.
ed.ac.uk.
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