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Abstract

DNA metabarcoding is an increasingly popular method to characterize and quantify

biodiversity in environmental samples. Metabarcoding approaches simultaneously

amplify a short, variable genomic region, or “barcode,” from a broad taxonomic

group via the polymerase chain reaction (PCR), using universal primers that anneal

to flanking conserved regions. Results of these experiments are reported as occur-

rence data, which provide a list of taxa amplified from the sample, or relative abun-

dance data, which measure the relative contribution of each taxon to the overall

composition of amplified product. The accuracy of both occurrence and relative

abundance estimates can be affected by a variety of biological and technical biases.

For example, taxa with larger biomass may be better represented in environmental

samples than those with smaller biomass. Here, we explore how polymerase choice,

a potential source of technical bias, might influence results in metabarcoding experi-

ments. We compared potential biases of six commercially available polymerases

using a combination of mixtures of amplifiable synthetic sequences and real sedi-

mentary DNA extracts. We find that polymerase choice can affect both occurrence

and relative abundance estimates and that the main source of this bias appears to

be polymerase preference for sequences with specific GC contents. We further

recommend an experimental approach for metabarcoding based on results of our

synthetic experiments.
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1 | INTRODUCTION

Metabarcoding, which is erroneously described as barcoding or

metagenomics in some literature, is the technique in which a univer-

sal primer pair is used to amplify multiple templates from a mixture

of many different taxa or haplotypes. Metabarcoding is often used in

conjunction with environmental DNA (eDNA), or DNA that is col-

lected from environmental sources such as water, sediment, air and

faeces (Deiner et al., 2017). Metabarcoding is an increasingly popular

tool in ecological and palaeoecological research, mainly due to its

simplicity and low cost. eDNA can be used, for example, to charac-

terize biodiversity of a particular taxonomic group (Ushio et al.,

2017) or to estimate the ranges of rare, extinct or cryptic species

(Haile et al., 2009; Jerde, Mahon, Chadderton, & Lodge, 2011; Ped-

ersen et al., 2016; Rees, Baker, Gardner, Maddison, & Gough, 2017).

Additionally, metabarcoding has been used to calculate differences in

haplotype or allele frequency between populations of the same spe-

cies (Sigsgaard et al., 2016) and to link changes in community com-

position over time to climatic shifts (Haile et al., 2007; Willerslev

et al., 2003, 2007, 2014). These latter examples analyse both the

occurrence and relative abundance of each unique sequence in the

amplification product, where abundance is estimated as the propor-

tion of the total number of sequences generated matching each

taxon or haplotype.

While metabarcoding is a promising approach to characterize

biodiversity both quickly and inexpensively, few studies have
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validated the method experimentally by, for example, testing the

extent to which the true community or population is reconstructed.

It is generally accepted that taxon occurrence can be inferred via

metabarcoding, provided that a sufficient number of PCR replicates

—amplifying DNA multiple times from the same soil extract using

the same amplification conditions—are performed (Pi~nol, Mir,

Gomez-Polo, & Agust�ı, 2015; Shaw et al., 2016) and false positives

have been accounted for (Lahoz-Monfort, Guillera-Arroita, & Tingley,

2016). The first eDNA metabarcoding studies used replication

(Cooper & Poinar, 2000), where DNA extraction and amplification

were both replicated, to help confirm their results (Willerslev et al.,

2003), but many subsequent studies did not replicate experiments

(Soininen et al., 2009; Sønstebø et al., 2010; Valentini et al., 2009).

After a detailed exploration of the utility of replication in metabar-

coding (Darling & Mahon, 2011), the use of replication increased,

but the number of replicates performed per experiment varied

widely. Most studies used between two and five PCR replicates per

sample (Andersen et al., 2012; De Barba et al., 2014; Jørgensen

et al., 2012; Willerslev et al., 2014) and some as many as eight

(Giguet-Covex et al., 2014). Recently, the use of site occupancy

models has been proposed as a tool to estimate how many replicates

are needed; with most recommendations ranging from six to 12

replicates per sample (Ficetola et al., 2015; Lahoz-Monfort et al.,

2016; Schmidt, K�ery, Ursenbacher, Hyman, & Collins, 2013), depend-

ing on the number and abundance of rare taxa. Another approach to

estimate the amount of replication required is rarefaction, whereby

the number of new taxa identified per replicate PCR is used to esti-

mate the probability that most rare taxa have been recovered (Hsieh,

Ma, & Chao, 2016; Sanders, 1968).

Whether relative abundance can be estimated accurately from

metabarcoding data is a more contentious issue. Some researchers

routinely interpret the relative abundance of sequences post-PCR as

indicative of real relative biomass estimates (Kowalczyk, Taberlet,

Kaminski, & Wojcik, 2011; Niemeyer, Epp, Stoof- Leichsenring, Pes-

tryakova, & Herzschuh, 2017; Willerslev et al., 2014). Others argue

against this approach, citing challenges that include differential DNA

degradation, different primer binding efficiencies and sequencing

errors as confounding factors that might influence the utility of rela-

tive abundance data collected from metabarcoding loci (Deagle, Tho-

mas, Shaffer, Trites, & Jarman, 2013; Deagle et al., 2007; Marcelino

& Verbruggen, 2016; Pawluczyk et al., 2015; Pi~nol et al., 2015).

Biases that might influence the likelihood of a taxon being

detected during metabarcoding can be both biological and technical

in origin. Biological differences include organism size, seasonal pres-

ence and senescence, preservation and dispersal strategy, among

others. Larger taxa, taxa that are present year-round or taxa whose

DNA is readily transported across long distances by wind or water,

may be more likely to be observed in environmental samples than

smaller, seasonal and sedentary taxa (Andersen et al., 2012; Barnes

& Turner, 2016; Buxton, Groombridge, Zakaria, & Griffiths, 2017;

Dunn, Priestley, Herraiz, Arnold, & Savolainen, 2017; Hemery, Poli-

tano, & Henkel, 2017; Rees et al., 2017). Even when the same num-

ber of cells is present in an environmental sample, the starting copy

number of target loci may vary between taxa and tissue type.

Chloroplast DNA, for example, is a common target for metabarcod-

ing, but can differ in copy number between taxa, individuals and cell

tissue types within the same plant (Morley & Nielsen, 2016). Tapho-

nomic factors may also influence DNA preservation, for example by

affecting the rate of degradation. Lignified structures in plants may

slow the rate of DNA degradation (Yoccoz et al., 2012), as may

anoxic environments (Corinaldesi, Barucca, Luna, & Dell’Anno, 2011).

In some environments, soil leaching and postdepositional mixing may

move DNA up or down sediment columns or horizontally over space

(Andersen et al., 2012; Anderson-Carpenter et al., 2011; Pedersen

et al., 2015; Rawlence et al., 2014).

Technical biases can be introduced during DNA extraction and

PCR amplification. DNA extraction protocols can be more or less

optimized for soil chemistry, which can influence the extent to which

DNA is recovered (Zieli�nska et al., 2017). Soils rich in clays or humic

acids may bind DNA, for example, reducing DNA recovery (Direito,

Marees, & R€oling, 2012). PCR is a highly stochastic process, which is

further complicated by the presence of variable templates, with

many opportunities for the introduction of bias (Aird et al., 2011;

Pinto & Raskin, 2012; Polz & Cavanaugh, 1998; Suzuki & Giovan-

noni, 1996). Although the universal primers used in metabarcoding

are designed to anneal to conserved genomic regions, slight variation

in binding site sequences may affect primer binding efficiency,

resulting in bias (Elbrecht & Leese, 2015; Pi~nol et al. 2015). For

example, Fahner, Shokralla, Baird, and Hajibabaei (2016) used four

plant-specific primers to infer community composition from the same

soil samples and found that each primer pair produced a different

result. This result may also be related to amplicon length whereby

shorter amplicons amplify more readily than longer amplicons. Tem-

plate secondary structures can also bias PCR when molecules with

secondary structures bind to themselves and inhibit their own ampli-

fication. In addition, templates with suboptimal GC contents can be

disfavoured during amplification, although some polymerases are

known to have reduced GC bias and additives such as dimethyl

sulphoxide (DMSO) for GC-rich templates or betaine for AT-rich

templates can reduce this bias (Baskaran et al., 1996; van Dijk,

Jaszczyszyn, & Thermes, 2014; Kozarewa et al., 2009). Finally, the

number of PCR cycles has also been shown to influence results:

while a higher number of PCR cycles might increase the likelihood

that rare molecules are observed, it could also skew abundance esti-

mates by amplifying the biases described above (Casbon, Osborne,

Brenner, & Lichtenstein, 2011; Weyrich et al., 2017), but this can

vary (Krehenwinkel et al., 2017; Vierna, Dona, Vizcaino, Serrano, &

Jovani, 2017).

Here, we explore the potential of polymerase choice to influence

the results of metabarcoding analyses, with particular reference to

polymerase GC bias. We selected the trnL g/h primer set (Taberlet

et al., 2007) as our universal barcoding primers for this evaluation,

as the target trnL (P6 loop) locus of the chloroplast genome is com-

monly used for plant metabarcoding studies (Pornon et al., 2016;

Sønstebø et al., 2010; Valentini et al., 2009). In addition, amplicons

derived from this primer set are within the range of 50 and 150 base
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pairs (bp), which is suitable for degraded environmental DNA and

also fully sequenceable using short-read sequencing technologies.

We performed metabarcoding on DNA extracted from soil collected

from St. Paul Island, Alaska, and on mixtures of synthetic oligonu-

cleotides whose inserts varied by GC content, using six polymerases,

including those commonly used in metabarcoding. Using these

experiments, we asked three questions: (i) Does polymerase GC

preference affect relative abundance estimates in metabarcoding

data? (ii) Are some polymerases more appropriate for metabarcod-

ing-derived estimates of relative abundance than others? And (iii)

Does GC bias affect occurrence estimates in metabarcoding experi-

ments?

2 | MATERIALS AND METHODS

2.1 | Experimental design overview

We designed our experiment to ask three questions. First, Does

polymerase GC preference affect relative abundance estimates in

metabarcoding data? To answer this, we performed metabarcoding

analyses of sedimentary DNA samples collected from St. Paul Island,

Alaska. We performed two separate tests. First, we performed trnL

(P6 loop) metabarcoding from nine samples and compared DNA-

derived biodiversity estimates and biodiversity estimates based on

above-ground survey data from the same sites. Next, for four of

these nine sedimentary DNA samples, we explored whether relative

abundance changed during the course of PCR amplification, follow-

ing the design depicted in Figure 1. In both of these tests, we

found that polymerase GC preference did affect relative abundance

estimated. Our second question was therefore Are some polymerases

more appropriate for metabarcoding-derived estimates of relative abun-

dance than others? To answer this question, we amplified pools of

synthetic oligonucleotides with a range of GC contents using six dif-

ferent polymerases and measured the precision with which each

polymerase reconstructed the starting concentrations of each

oligonucleotide pool. Our third question was Does GC bias also

affect occurrence estimates in metabarcoding experiments? To answer

this question, we again used the sedimentary DNA samples from St.

Paul Island, Alaska, but this time performed metabarcoding using

the polymerase identified in Question 2 as the least biased. We

estimated the reproducibility of occurrence data using rarefaction

analysis of ten replicate PCRs per sample.

2.2 | Data generation

2.2.1 | Environmental DNA from St Paul Island,
Alaska

We collected soil samples from St. Paul Island, Alaska. This small

(~114 km2), isolated island is situated ~450 km west of the coast of

Alaska in the Bering Sea (~50.2°N, 170.2°W). St. Paul is the largest

and most northerly island of the Pribilof Islands (Mungoven, 2005),

has a low diversity of plants and terrestrial mammals (Colinvaux,

1981; Preble & McAtee, 1923) and completely lacks trees. We

selected nine sampling sites that were spatially separate from each

other, geologically distinct and appeared to be colonized by different

vegetative communities. At each site, a 1 9 1 m quadrat was cho-

sen. We removed a ~15 9 15 9 10 cm (L 9 W 9 D) volume of sur-

face soil from the centre of each quadrat using a knife and trowel

that we cleaned with ethanol between uses. We transferred

~10–20 g of soil to a sterile 50-ml falcon tube for eDNA analyses.

In addition to collecting sediment, we performed surveys of

above-ground vegetation. We photographed the surface vegetation

in each quadrat and performed a census of each taxon growing

within the unit. We counted stems from each representative of each

plant taxon and tallied the total for each unit (no counts exceeded

50). For very widespread and ubiquitous taxa, including spreading

mat-forming types (e.g., mosses growing at the ground surface) and

oversized plants with wide crowns, we estimated relative abundance

based on percentage coverage within the unit. We identified the

majority of common taxa in the field by comparison with a local col-

lection curated at the St. Paul Public School and verified taxonomic

assignments using Hult�en’s floras (Hult�en, 1960, 1968). We collected

representative samples of distinct or unknown taxa for later taxo-

nomic verification, which we carried out using the relevant published

floras along with online keys and floristics data (Hult�en, 1960; Mun-

goven, 2005; Stotler & Crandall-Stotler, 2005; Talbot & Talbot,

1994; Walker et al., 2005). We converted the count data and the

proportion of ground covered as a rank order (1 = 1–20% cover or

<10 count; 2 = 21–40% or 10–24 count; 3 = 41–60% or 25–50

count; 4 = 61–80%; 5 = 81–100%) as a proxy for plant abundance

at each sampling location.

We extracted environmental DNA from all nine soil samples

using the MoBio PowerSoil DNA Isolation Kit (now called Qiagen

DNeasy PowerSoil Kit), following the manufacturer’s instructions. To

F IGURE 1 Schematic of the amplicon competition experiment. We chose four eDNA extracts and ran each in a PCR with trnL g/h and
Platinum Taq using the recipe in Graham et al. (2016). Starting at cycle 10 and every five cycles up to cycle 60, we cooled the reaction to
20°C and removed 1 ll. We converted each 1 ll of PCR product into a sequenceable library individually. After sequencing and processing the
reads, we plotted each amplicon as a function of PCR cycle and relative abundance [Colour figure can be viewed at wileyonlinelibrary.com]
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avoid contamination, we performed all steps in a clean laboratory

that is physically isolated from other molecular biology research,

while wearing sterile suits, face masks and gloves for DNA extrac-

tions and PCR set-up. To monitor cross-contamination, we extracted

and processed the samples alongside two negative extraction

controls, but did not use a positive control.

2.2.2 | Synthetic oligonucleotide pools

We designed and synthesized 12 oligonucleotides with inserts of 47

base pairs (bp) flanked by the trnL g/h primer binding sites with no

mismatches (total length: 83 bp; Supplementary Table S1). This set

included two oligonucleotides with 13% average GC content, two

with 26% average GC content, two with 51% average GC content,

two with 63% average GC content and four oligonucleotides with

38% average GC content. We then created six mixtures of these 12

oligonucleotides in which each oligonucleotide was included at dif-

ferent, but known, concentrations. We then diluted each mixture to

10 fM, which qPCR indicated was similar to the concentrations in

our eDNA extracts. To verify pooling accuracy, we amplified each

mixture using an approach that adds unique molecular identifiers

(MIDs) to each starting molecule (Cole, Volden, Dharmadhikari,

Scelfo-Dalbey, & Vollmers, 2016; Hoshino & Inagaki, 2017). Briefly,

we first performed two cycles of PCR using modified versions of the

trnL g/h primers that contained a 50 molecular identifier (which com-

prised five random nucleotides, followed by AT, followed by another

three random nucleotides: NNNNNATNNN) and the Nextera adapter

sequence (Supplementary Figure S1). This two-cycle PCR, which is

performed using the permissive Phusion polymerase (New England

Biosystems), adds to each starting molecule a uniquely identifying

barcode that can be used to reconstruct bioinformatically the true

starting relative abundance of molecules. After a clean-up step, we

then amplified the product of this two-cycle PCR for an additional

30 cycles with standard Nextera indexing primers and the higher

fidelity polymerase in Kapa HiFi ReadyMix (Kapa Biosystems). After

sequencing, we counted the number of unique MIDs for each ampli-

con to verify the starting relative abundance of molecules in the

pool.

2.2.3 | PCR amplification, library preparation,
sequencing and bioinformatics

We performed PCR using the trnL g/h primers and six different

polymerases (Table 1). We performed gradient PCR as necessary

to determine optimal annealing temperatures for each of the dif-

ferent polymerases. For Platinum HiFi Taq, AmpliTaq Gold and

Phusion, we used reagent mixes that are described in previous

publications (Cole et al., 2016; De Barba et al., 2014; Graham

et al., 2016). All final recipes and cycling conditions are provided

in the supplement (Supplementary Table S2). We confirmed that

amplification products were in the expected size range (50–

150 bp) via gel electrophoresis, which also confirmed that all

extraction and PCR-negative controls lacked visible amplification

products. We purified amplification products using a SPRI bead

protocol (Rohland & Reich, 2012).

We transformed PCR amplicons into sequenceable libraries using

two different approaches. Initially (for questions one and two), we

used a lengthy protocol described by Meyer and Kircher (2010) (MK)

that involves blunt-end repair, phosphorylation, adapter ligation and

fill-in, and indexing PCR. To answer question three, we compared

the MK protocol to a shorter and less expensive approach that

amplifies DNA using trnL g/h primers with 50 overhangs containing

the Illumina TruSeq adapter sequences. This made it possible to pro-

ceed directly to indexing PCR following the initial metabarcoding

PCR, allowing library preparation to be completed in two steps (two

PCR set-ups). To assess whether the two-step protocol performed

differently from the MK protocol, we performed a comparative

experiment in which we amplified DNA and sequenced libraries gen-

erated from a common master mix of Qiagen Multiplex Master Mix,

water and template (consisting of an equimolar mixture of synthetic

oligonucleotides). After sequencing, we found there was no signifi-

cant difference between the two methods (standard least squares

test: whole model F ratio = 0.55, p = 0.58, Supplementary Fig-

ure S2). While we find no difference between these two library

preparation approaches, additional comparative analyses of prepared

libraries for example using different GC content binning strategies,

will be necessary to explore fully whether one library preparation

approach is superior by all metrics to another.

For all experiments, we sequenced libraries on the Illumina

MiSeq platform using 2 9 75 v3 chemistry, targeting 150,000 reads

per sample. We used rarefaction to confirm that sequencing depth

was sufficient to recover all amplified molecules (Hsieh et al., 2016).

After sequencing, we processed each data set using an in-house

bioinformatics pipeline. Briefly, we removed adapters and merged

overlapping reads using SEQPREP version 2 (https://github.com/

jstjohn/SeqPrep), with the following flags: minimum length of reads

(-L) 37 (combined length of the primer sequences plus one), overlap

required to merge read1 and read2 (-o) 10, minimum length of adap-

ter to consider trimming (-O) 8 and quality threshold (-q) 15. We fil-

tered the merged reads and retained sequences containing either an

exact match to the forward primer and the reverse complement of

the reverse primer (correct orientation) or an exact match to the

TABLE 1 The six polymerases used in this study. *Platinum HiFi
is a blend of two polymerases (one proofreading, one not)

Polymerase/mix Manufacturer Proofreading
Hot
start

AmpliTaq Gold, Buffer II Applied Biosystems N Y

Kapa HiFi ReadyMix Kapa Biosystems Y Y

Phusion New England

BioLabs

Y N

Platinum HiFi Invitrogen Y* Y

Q5 29 Master Mix New England

BioLabs

Y Y

Qiagen Multiplex

Master Mix

Qiagen N Y
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reverse primer and the reverse complement of the forward primer

(incorrect orientation). We then reverse-complemented the data in

the incorrect orientation using the FASTX toolkit version 0.0.13

(http://hannonlab.cshl.edu/fastx_toolkit/) and concatenated these

data with those in the correct orientation. We trimmed any remain-

ing adapter and PCR primer sequences from the ends of the filtered

reads and removed any reads that retained any primer sequences or

that were shorter than six base pairs using PRINSEQ-lite version 0.20.4

(Schmieder & Edwards, 2011). We created a single file with all

unmerged reads, so that read1 and read2 were on the same line and

processed this file as described above. We then split this file back into

read1 and read2 files. We did not remove sequences that contained a

mismatch to known synthetic oligonucleotide insert sequences (see

below). For the sequence data derived from the St. Paul soil samples,

all amplicons were short enough that the sequences could be merged.

We used the OBITOOLS software defaults (Boyer et al., 2016) to group

identical sequences (obiuniq), remove singletons and PCR artefacts

(obiclean –H) and compare the sequences to the arctic, boreal and

embl reference libraries (Sønstebø et al., 2010; Willerslev et al., 2014)

to identify the reads to their best-associated plant taxa. Because we

used three reference libraries, three separate result files were created

for each sample (one for each reference library). We parsed the three

files using a script that compared the results in each file and extracted

only the entries with the highest percentage identity and lowest taxo-

nomic rank. If two species of the same genus were seen, that sequence

was classified to the genus level. We set a cut-off value of 98% iden-

tity and removed reads at proportions less than 0.001. The number of

raw and merged reads and number of identified taxa per sample are

listed in the Supplementary Materials (Supplementary Table S3).

For the synthetic oligonucleotide pools, we used grep to pull out

the known sequences and their reverse complements and count how

many times they occurred within each FASTA file. As the OBITOOLS and

GREP methods both provided count data, we converted these counts

to relative abundances.

2.3 | Data analysis

2.3.1 | Question 1: Does polymerase GC preference
affect relative abundance estimates in metabarcoding
data?

For the nine St. Paul samples, we performed ten replicate PCRs per sam-

ple using Platinum HiFi Taq polymerase (Invitrogen) following the proto-

col found in Graham et al. (2016). After sequencing and read processing

as detailed above, we used standard least squares to test the effects of

above-ground vegetation abundance and amplicon average GC content

on DNA relative abundance, both separately and interactively.

To test the effect of PCR cycle number on the relative abun-

dances of different plant taxa, we chose four St. Paul soil eDNA

extracts and two PCR controls, scaled up the PCR to 100 lL and

collected 1 lL aliquots at five-cycle intervals from cycles 10–60 (Fig-

ure 1). We used a large reaction volume to minimize the impact of

aliquot removal and cooled the reaction to 20 C during each

collection step to avoid evaporation. Large numbers of cycles are

often used in metabarcoding experiments because the target loci are

at very low abundances relative to the total amount of extracted

DNA and eDNA extracts often have PCR inhibitors (Kennedy, Calla-

han, & Carlson, 2013). We used 60 cycles to be sure that all PCRs

had reached the plateau phase. Each aliquot was made into an Illu-

mina sequencing library individually using a library preparation proto-

col based on Meyer and Kircher (2010) (as detailed above). We

called this our amplicon competition experiment (Figure 1).

2.3.2 | Question 2: Are some polymerases more
appropriate for metabarcoding-derived estimates of
relative abundance than others?

We assessed whether six polymerases (Table 1) could individually

maintain the starting ratio (relative abundance) of oligonucleotides in

mixtures after 35 cycles of PCR. For each polymerase, we performed

six experiments in which synthetic oligonucleotides were combined at

different ratios based on sequence GC content. The oligonucleotides

were combined (1) in equimolar ratios (two experiments), (2) by

increasing proportion with GC content, (3) by decreasing proportion

with GC content, (4) with extreme GC contents being most abundant

and (5) with extreme GC contents being least abundant. For each

experiment, we performed metabarcoding PCRs in triplicate using the

trnL g/h primers. After obtaining relative abundance estimates for each

oligonucleotide in each pool, we plotted expected abundances (rela-

tive abundance prior to amplification) versus observed abundances

(relative abundance after amplification) for each polymerase. We then

calculated the Pearson correlation coefficient between observed and

expected abundance values for each enzyme.

2.3.3 | Question 3: Does GC bias affect occurrence
estimates in metabarcoding experiments?

We again performed metabarcoding on the nine St. Paul soil eDNA

extracts as described for Question 1, but used the Qiagen Multiplex

Master Mix (Qiagen), which our results indicated is the least biased

of the six polymerases tested (see below). As with the experiment

described in Question 1 using Platinum HiFi Taq (Invitrogen), we

performed ten replicate PCRs for each sample. We assigned ampli-

cons to taxa as described above. We then performed rarefaction for

each replicate set from both polymerases using iNEXT (Hsieh et al.,

2016) in R version 3.4.2 (http://www.R-project.org/).

3 | RESULTS

3.1 | Question 1: Does polymerase preference for
certain GC contents affect relative abundance
estimates in metabarcoding data?

For this question, we used the above-ground vegetation abundance

data, which were collected prior to the DNA work, and the Platinum

HiFi Taq-amplified metabarcoding data. Both data sets were
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generated from the same nine localities on St. Paul. Using both of

these, we plotted all plant taxa that were identified using both

above-ground and eDNA at all locations on the same plot but split

into GC content bins (Figure 2). The x-values are above-ground

ranked abundances, and the y-values are mean eDNA abundance

across replicates. When we compared relative abundance estimates

from the metabarcoding experiments to the relative abundance

inferred from above-ground biomass, we found that whether or not

these two estimates agreed depended on average GC content of the

plant’s trnL (P6 loop) locus (standard least squares, whole model:

F = 34.25, p < 0.0001; effect tests: average GC, t = 1.54, p = 0.124,

above-ground abundance, t = 12.27, p < 0.0001, average GC*above-

ground abundance, t = 4.39, p < 0.0001). Figure 2 shows that

above-ground and eDNA-based estimates of abundance are corre-

lated most strongly in middle GC content bins, but this relationship

decreases or disappears completely in the more extreme GC content

bins. This pattern is consistent with the previously reported optimal

GC content of 34–38% for Platinum HiFi Taq polymerase (Dabney &

Meyer, 2012).

While this pattern observed in Figure 2 supports the hypothesis

that sequences with certain GC contents are preferentially amplified

via PCR, it does not exclude the possibility that biological factors,

such as differences in above- versus below-ground biomass, are

influencing the results. We therefore performed an additional experi-

ment in which we measured changes in DNA-based relative abun-

dance estimates directly during the course of PCR for four St. Paul

eDNA extracts (Figure 1). Figure 3a shows the changes in relative

abundance of the twelve most abundant taxa in each of the four

samples during cycles 20 through 60 of the PCR. Libraries from

cycles 10 and 15 had no sequenceable amplicon molecules. Expo-

nential amplification appears to start at cycle 30 for all samples, and

this was confirmed by qPCR (Supplementary Figure S3). We calcu-

lated the fold change from cycle 30–60 and used this to quantify

the increase or decrease in the relative abundance of each amplicon.

We then recorded the number of primer mismatches and barcode

length for each amplicon. We found that neither primer mismatches

nor amplicon length explained the increase or decrease in rela-

tive abundance (primer mismatches, R2: 0.011; sequence length,

F IGURE 2 DNA abundance and above-ground abundance across average GC content bins. After collecting the DNA data, we took all data
on plant taxa that were identified at all locations, put them in the same plot and split them into GC content bins. Each point is a plant taxon
where x is its ranked above-ground abundance and y is its mean DNA abundance across replicates. Some taxa identified in the above-ground
were not found in the DNA data and some found in the DNA were not found in the above-ground data. For above-ground abundance, 5 is
the highest rank, meaning the most abundant, whereas 0 indicates absence. Lines are linear best fits with p-values >0.3 for all bins except the
middle bin where the p = 0.03

F IGURE 3 Changes in relative abundance over the duration of a 60-cycle PCR for four St. Paul Island sediment samples. (a) Plots showing
relative abundance measured at 5-cycle intervals between cycles 20 and 60. Coloured lines show relative abundance estimates for the 10
most abundant plant taxa in these samples. (b) Plot describing the fold change for each taxon in each experiment between cycle 30 and cycle
60, with a linear line of best fit (p = 0.002), showing that change in relative abundance correlates with GC content. The y-axis is plotted on a
log scale; therefore, values above 1 indicate that the amplicon is increasing in abundance from cycle 30–60 and values below 1 indicate that
the amplicon is decreasing in abundance
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R2: 0.095). However, we found a positive correlation with average

GC content and fold change from cycle 30–60 (R2: 0.474, Linear fit

p = 0.002; Figure 3b).

3.2 | Question 2: Are some polymerases more
appropriate for metabarcoding-derived estimates of
relative abundance than others?

Results from Question 1 suggest that Platinum HiFi Taq polymerase

preferentially amplifies sequences with 34–38% GC. To identify

polymerases that might be more appropriate for metabarcoding than

Platinum HiFi Taq, we performed metabarcoding on mixtures of syn-

thetic oligonucleotides with different GC contents using six com-

monly used polymerases (Table 1). We found that the correlation

between observed and expected oligonucleotide proportions differed

between enzymes (Figure 4). Among the polymerases tested, the

Qiagen Multiplex Master Mix polymerase most accurately recon-

structed the known starting relative abundances (Figure 4a, and var-

ied the least in accuracy by GC content (Figure 4b). However, the

Qiagen Multiplex Master Mix polymerase also had the highest pro-

portion of sequences with at least one error (Figure 4c). Figure 5

shows the differences between observed and expected relative

abundance using the most quantitatively accurate (Qiagen Multiplex

Master Mix polymerase) and least quantitatively accurate (Phusion

polymerase) enzymes. Detailed plots for the other four enzymes are

provided in the Supplementary Materials (Supplementary

Figures S4–S7).

3.3 | Question 3: Does GC bias affect occurrence
data?

The results above show that polymerase biases can influence eDNA-

based estimates of relative abundance. To test whether polymerase

bias may also influence the accuracy of occurrence estimates, we

performed an additional experiment in which we PCR-amplified the

trnL (P6 loop) locus from the same nine St. Paul eDNA extracts that

were amplified for Question 1, however, this time using the best-

performing enzyme as identified by the synthetic oligonucleotide

experiment above, Qiagen Multiplex Master Mix. As with Platinum

HiFi Taq polymerase, we performed 10 replicate PCRs for each of

the nine eDNA samples, and used rarefaction to confirm that

sequencing depth of each PCR library was sufficient to recover all

amplified molecules (Hsieh et al., 2016). We then performed addi-

tional rarefaction analyses, this time asking whether additional PCR

replicates were contributing significantly towards biodiversity esti-

mates. We found that after 10 replicates, mean sample coverage

(the probability that all rare taxa have been recovered) was not sig-

nificantly different when using the Qiagen Multiplex Master Mix

compared to Platinum HiFi Taq (t = �0.66, df = 15.76, p = 0.52; Fig-

ure 6). In addition, despite the fact that St. Paul has low plant diver-

sity (Colinvaux, 1981; Preble & McAtee, 1923), only one site appears

to have reached a rarefaction plateau, which would suggest that the

majority of species present have been sequenced after 10 replicates.

However, when we compared this to the data generated using Plat-

inum HiFi Taq, this sample had not yet reached a rarefaction plateau.

Given the small sample size, it is not possible to know whether this

difference is due to polymerase choice or to chance.

F IGURE 4 Testing polymerases using pools of synthetic
oligonucleotides. a, b and c combine data from six pools of synthetic
oligonucleotides amplified using six polymerases. (a) Observed
proportions plotted against expected proportions for six
polymerases. Each panel contains data for all six pools of oligos. (b)
Difference from expected proportions plotted against average GC
content. Here, we only used data from the equimolar pools. (c)
Proportion of reads with at least one error for each enzyme/mix
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4 | DISCUSSION

Our results show polymerase GC bias can dramatically alter the rel-

ative abundance of molecules during PCR. It is important, therefore,

to use an experimental approach in metabarcoding that limits the

influence of polymerase GC bias. Molecular identifier (MID), also

called unique molecular identifier (UMI), methods (Cole et al., 2016)

offer a possible solution, as they allow each starting molecule to be

disambiguated bioinformatically after PCR. In this way, GC bias that

manifests during PCR can be effectively ignored. However, these

methods are not yet optimized for the mixed, low concentration

samples that are most often available for metabarcoding. While we

successfully tested a UMI approach for the analysis of synthetic

mixtures of oligonucleotides, the approach often failed to produce

sequencing libraries when analysing actual eDNA samples. This may

be due to inhibitors and/or very low concentrations of target DNA

compared to all extracted DNA. Because polymerases vary in the

degree to which they are biased towards GC content, another

approach is to simply choose the least biased polymerase. Of the

six polymerases evaluated here, our data show that the Qiagen

Multiplex Master Mix is the least biased and effectively retains

abundance ratios throughout the PCR (R2: 0.95). Qiagen Multiplex

Master Mix (but not the enzyme, HotStarTaq, itself) was originally

engineered for experiments that targeted multiple templates simul-

taneously, which may explain why it performs well here (Qiagen

2013).

If a biased polymerase is used in metabarcoding, the DNA results

may not reflect the true relative abundance of target taxa. For the

plant trnL (P6 loop) locus, for example, GC content varies consider-

ably among major plant growth forms (Figure 7). The GC content of

forbs, or low-lying herbaceous flowering plants, falls mainly within

the range preferred by most polymerases (Dabney & Meyer, 2012).

F IGURE 5 Expected (black lines) and
observed abundances of the six synthetic
oligonucleotide mixtures using Phusion
(green open circles) and Qiagen Multiplex
Master Mix (purple open circles) plotted as
proportional data. Each oligonucleotide
was pooled at 10 lM, and then, each pool
was diluted to 10 fM. Each 10 fM pool
underwent PCR using the six different
polymerases. The results for the best and
the worst polymerases are plotted here

F IGURE 6 Rarefaction curves resulting from metabarcoding experiments for nine sites on St Paul Island, Alaska, using Platinum HiFi Taq as
described in Graham et al. (2016) and the Qiagen Multiplex Master Mix following manufacturer’s instructions. For each extract and
polymerase, we performed 10 replicate PCRs. Rarefaction plots describe the number of unique taxa added per replicate. Solid lines are results
from the 10 experiments, and dashed lines are predicted values calculated using iNEXT (Hsieh et al., 2016) in R version 3.4.2 [Colour figure
can be viewed at wileyonlinelibrary.com]
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Our DNA-based relative abundance estimates of plants from St. Paul

(Figure 8) and those previously published from Siberia and Alaska

(Supplementary Figure S8) (Willerslev et al., 2014) were both gener-

ated using Platinum HiFi Taq polymerase targeting the trnL P6-loop

locus and showed that graminoids (grasses and sedges) were less

abundant than forbs. Because this pattern falls within the biases of

Platinum HiFi Taq polymerase, these results may simply reflect poly-

merase bias rather than true biological signal.

Although our results indicate that GC bias can confound

metabarcoding-based relative abundance estimates, other potential

sources of bias may also influence amplicon competition during PCR.

For example, differences in the number of mismatches between the

sequence and the primer at the primer binding site and differences

in template length will also affect the efficiency with which an ampli-

con is copied (Stadhouders et al., 2010). While we did not find that

the number of primer mismatches affected the efficiency of replica-

tion, few taxa have mismatches to the trnL g/h primers (Taberlet

et al., 2007). Primer mismatches have been shown, however, to

influence relative abundance for other metabarcoding loci (Pi~nol

et al., 2015). In addition, shorter molecules tend to amplify more

readily than longer molecules during PCR (Shagin, Lukyanov, Vagner,

& Matz, 1999), and while most sequences amplified by the trnL g/h

primers in this study tended to be around the same length, other

metabarcoding loci vary considerably in barcode length between

amplified taxa. Another source of bias during PCR is homopolymer

repeats (Kieleczawa, 2006). In our amplicon competition experiment

using Platinum HiFi Taq, the plant taxa Anthemideae and Pedicularis

decreased in abundance in all four samples despite having optimal

(Anthemideae has a GC content of 36%) and close to optimal (Pedic-

ularis is 31%) GC contents, which may be because these barcodes

contain 8- and 9-bp-long homopolymer runs, respectively. In com-

parison with Platinum HiFi Taq, we noted that Anthemideae and

Pedicularis had increased abundances when using Qiagen Multiplex

Master Mix (Supplementary Figures S9–S12), suggesting that Qiagen

Multiplex Master Mix was not deterred by the homopolymer

repeats. Finally, polymerase error rates are a potential source of

error in metabarcoding experiments, and our results showed that

HotStarTaq in the Qiagen Multiplex Master Mix had the highest

error rate of the six polymerases used (Figure 4c). Polymerase error

has the potential to produce false-positive results when barcoding

loci differ by one or a few base pairs, although this may be amelio-

rated by bioinformatic pipelines capable of identifying potential

sequencing errors.

Our results suggest that occurrence data, which have been

believed to be largely reliable from metabarcoding experiments, can

also be challenging to interpret. While it is understood that rare taxa

may be more difficult to identify than common taxa, recommenda-

tions within the field have been to perform replicate PCRs, with little

guidance as to how many PCRs are necessary. Our experiments from

St. Paul suggest, however, that more than 10 replicate PCRs would

be necessary to sample the breadth of taxa within our extracts,

regardless of polymerase GC bias. In many instances, it may be more

practical to combine DNA-based surveys with other data types, such

as pollen and identification of macroscopic remains (Birks & Birks,

2015). While site occupancy models offer a potential solution to

estimate the number of replicates required to identify rare taxa (Dor-

azio & Erickson, 2017; Schmidt et al., 2013), these are constructed

for single species and would not be practical for experiments that

aim to describe an entire community. We note, however, that the

most abundant taxa were recovered in all PCR replicates for all sites

and both polymerases, suggesting that DNA metabarcoding is a rea-

sonable approach to identify at least the most abundant taxa in an

environment, even if only a single replicate PCR is performed (Leray

& Knowlton, 2017).

While our current work has identified an experimental approach

to reduce the influence of GC content on relative abundance esti-

mates in metabarcoding, it is important also to consider other

sources of potential biases and error when interpreting results. For

example, errors such as tag switching, where sample-specific bar-

codes are associated with the incorrect sample during either library

F IGURE 7 Average GC content across different plant growth
forms. The data come from the current study and Willerslev et al.
(2014). Both studies used Platinum HiFi Taq polymerase. Ferns
include horsetails

F IGURE 8 St Paul data generated using eDNA and separated
into plant growth forms. Ferns include horsetails. All plant taxa from
all samples are plotted both using Platinum HiFi Taq and Qiagen
Multiplex Master Mix. Each data point is the relative abundance of a
plant taxon from a particular location grouped into its growth form
and shaded based on its average trnL p6-loop GC content. The
darker the point is, the lower the average GC content
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preparation (Schnell, Bohmann, & Gilbert, 2015) or sequencing

(Kircher, Sawyer, & Meyer, 2012), may influence both occurrence

and relative abundance data. Fortunately, the latter problem can be

mitigated by adding indices to both ends of the molecule (Kircher

et al., 2012). The choice of bioinformatic pipeline can also influence

results. For example, in a recent analysis of the metagenome of fresh

basil, three of four pipelines identified Salmonella but, because Sal-

monella was not identified via qPCR, the authors concluded that the

bioinformatic results were erroneous (Ceuppens, De Coninck, Bottle-

doorn, Van Nieuwerburgh, & Uyttendaele, 2017). While public data-

bases containing metabarcoding loci continue to expand in

taxonomic depth (Bell, Loeffler, & Brosi, 2017), some lineages are

more poorly represented. Finally, biological differences between spe-

cies, including variation per cell or tissue type in the number of

amplifiable loci (Morley & Nielsen, 2016), differences in organism

size, seasonal senescence and behaviour, may all influence the prob-

ability that an organism will be represented in a particular environ-

mental sample. Although work remains to be performed to better

understand the consequences of these various types of bias and

error, metabarcoding remains a powerful approach to quickly and

inexpensively characterize communities.

5 | CONCLUSION

Despite the rapid growth of metabarcoding as a technique for char-

acterizing communities from eDNA samples, relatively little attention

has been given to validating the methodology and understanding its

limitations. Polymerase GC bias is a known challenge for applications

that rely on PCR (Aird et al., 2011; Dabney & Meyer, 2012; Kozar-

ewa et al., 2009). With the advent of next-generation sequencing

approaches, PCR-free methods have been developed to convert

extracted DNA into sequenceable molecules (Kozarewa et al., 2009).

PCR remains the most useful approach to catalogue diversity in envi-

ronmental samples, however, as the number of target molecules is

small relative to the total extracted DNA. For this reason, it is impor-

tant to understand the influence of GC bias in metabarcoding

approaches and, if possible, mitigate these biases. Here, we showed

that many commonly used PCR protocols are not appropriate for

generating reliable estimates of relative abundance. In these cases,

our results show that the relative abundance of amplified sequences

changes during PCR cycling and that these changes are related to

the GC content of the target. Of the six polymerases and mixtures

tested, Qiagen Multiplex Master Mix provided the most accurate

estimates of relative abundance, but also generated the highest error

rate. However, we found no evidence that occurrence data were

influenced by polymerase bias.
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