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Abstract

In recent years, ancient DNA has increasingly been used for estimating molecular timescales, particularly in studies of substitution
rates and demographic histories. Molecular clocks can be calibrated using temporal information from ancient DNA sequences.
This information comes from the ages of the ancient samples, which can be estimated by radiocarbon dating the source material
or by dating the layers in which the material was deposited. Both methods involve sources of uncertainty. The performance of
Bayesian phylogenetic inference depends on the information content of the data set, which includes variation in the DNA
sequences and the structure of the sample ages. Various sources of estimation error can reduce our ability to estimate rates and
timescales accurately and precisely. We investigated the impact of sample-dating uncertainties on the estimation of evolutionary
timescale parameters using the software BEAST. Our analyses involved 11 published data sets and focused on estimates of
substitution rate and root age. We show that, provided that samples have been accurately dated and have a broad temporal
span, it might be unnecessary to account for sample-dating uncertainty in Bayesian phylogenetic analyses of ancient DNA. We
also investigated the sample size and temporal span of the ancient DNA sequences needed to estimate phylogenetic timescales
reliably. Our results show that the range of sample ages plays a crucial role in determining the quality of the results but that
accurate and precise phylogenetic estimates of timescales can be made even with only a few ancient sequences. These findings
have important practical consequences for studies of molecular rates, timescales, and population dynamics.
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Introduction
The tempo and timescale of evolutionary and demographic
processes are of considerable interest in biological research.
These can be studied using molecular-clock models in phylo-
genetic analyses of DNA sequence data. Although some clock
models assume a constant rate of evolution (strict clock),
others allow the evolutionary rate to vary among lineages
(relaxed clock). A common characteristic of all molecular-
clock methods is that they require the use of age calibrations
to convert units of genetic change into units of time.
Calibrations are commonly based on paleontological or geo-
logical data, which can provide an estimate of the timing of
divergence events (internal nodes) in the phylogenetic tree.
However, because of difficulties in assigning fossils to branches
of the evolutionary tree, the placement of calibrations is often
highly uncertain (Lee et al. 2009). In addition, internal-node
calibrations can carry a substantial amount of temporal un-
certainty, and it is usually difficult to quantify this (Ho and
Phillips 2009).

Identifying reliable calibrations for intraspecific analyses is
particularly challenging. Estimating intraspecific timeframes is
important when studying changes in population sizes and
structure and associating these with abiotic and biotic factors
such as climate change or human activity (Arbogast et al.
2002; Ramakrishnan and Hadly 2009; de Bruyn et al. 2011).
The fossil record is usually uninformative with respect to the
timing of intraspecific divergences (Ho, Lanfear, Bromham,
et al. 2011), whereas calibrations based on geological events
require a number of strong assumptions that might not be
met by the data (e.g., Marko 2002). Furthermore, because of
factors such as incomplete lineage sorting, the association
between genetic divergence and population divergence is
not always clear (Edwards and Beerli 2000). Although
paleontological or geological calibrations can be used, there
is evidence that these are inappropriate for intraspecific ana-
lyses because of the effects of saturation, purifying selection,
and other factors (Ho and Larson 2006; Ho et al. 2008).
Therefore, it is preferable to employ calibrations within the
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intraspecific genealogy, using DNA sequences from dated
material sampled at various points in time—time-stamped
DNA sequences (Rambaut 2000; Drummond et al. 2004).
Provided that these sequences are sufficiently variable,
owing to either a high mutation rate or a broad temporal
span, it is possible to estimate the rate of molecular evolution
(Drummond et al. 2002, 2003).

Several phylogenetic methods can use temporal informa-
tion from time-stamped DNA sequences to calibrate molecu-
lar clocks. These include dedicated maximum-likelihood and
Bayesian methods, which have been implemented in a
range of programs including BEAST (Drummond and
Rambaut 2007), PAML (Yang 2007), r8s (Sanderson 2003),
and Bayesian Serial SimCoal (Excoffier et al. 2000;
Anderson et al. 2005). Some of these methods require a
fixed tree, whereas others can coestimate substitution
rates, node times, and phylogenetic relationships. Here, we
focus on Bayesian phylogenetic methods (implemented
in the software BEAST), which allow the uncertainty in
sample ages to be included in the form of prior probability
distributions.

The performance of Bayesian phylogenetic analysis of an-
cient DNA strongly depends on the information content of
the data set (Ho, Lanfear, Phillips, et al. 2011). The number,
genetic variation, and age range of the ancient sequences used
for calibration of molecular clocks are expected to affect
the ability to estimate rates and timescales accurately
(Drummond et al. 2003). For this reason, the mitochondrial
control region is a useful marker because its high mutation
rate means that it can accumulate an appreciable amount of
genetic change over a short period of time. Various sources of
error, such as in determination of sample age, can also reduce
the accuracy of phylogenetic estimates of timescales (e.g.,
Wertheim 2010).

When dealing with ancient DNA, sample ages are usually
unknown and need to be estimated using direct or indirect
dating methods. However, the common practice of treating
the estimates of sample ages as point values for calibration is
potentially problematic because it ignores the associated
uncertainties (Ho and Phillips 2009; Shapiro et al. 2011).

Accelerator mass spectrometry radiocarbon dating is often
used to directly date material<50,000 years old. This method
measures the 14C-isotope content of a sample and assumes a
constant rate of radioactive decay. There are several sources
of error associated with radiocarbon dating, including esti-
mating the number of stochastic 14C decay events within a
finite time interval. Dating laboratories usually describe these
errors using Gaussian (normal) distributions and estimate
them along with the radiocarbon dates (Stuiver and Polach
1977; Bowman 1990).

Because of variation in the level of atmospheric 14C
through time, the age estimates from radiocarbon dating,
given in radiocarbon years, do not equal calendar years. It is
sometimes useful to convert radiocarbon years into calendar
years, for example, when the aim is to compare the estimated
timescale of demographic events with records of climate
change or other factors (Svensson et al. 2008). This conver-
sion, which can be performed using calibration curves,

reshapes the distribution of estimated dating error and intro-
duces additional sources of uncertainty (Bronk Ramsey 1995;
Beavan-Athfield et al. 2001).

Other sources of dating error are less quantifiable. For ex-
ample, samples can be contaminated with more recent
sources of carbon, owing to either the dynamics of the deposi-
tional environment or during excavation and laboratory prep-
aration (Mellars 2006). The resulting increase in 14C content
can lead to underestimation of the true age of the sample.
Such risks can be assessed and minimized by replicating the
dating process using different sections of the sample and by
checking concordance with archeological or geological con-
text (Törnqvist et al. 1992).

As an alternative to radiocarbon dating, which is costly and
involves destruction of the material being analyzed, samples
can be dated indirectly. In indirect dating, the age of the
sample’s depositional layer is estimated by archeological or
stratigraphic context or by directly dating organic remains
within or at the boundary of the layer. Indirect dates are,
however, associated with far greater uncertainties than
direct dates. Apart from the errors associated with the
dating of the layer boundaries, reburial or mixing of deposits
can lead to substantial errors. Consequently, assigning a point
value for the age of a layer-dated sample can be highly mis-
leading. In studies of ancient DNA from environmental sam-
ples, there is an additional risk of DNA migrating between
strata (Haile et al. 2007).

Sample-age uncertainties can be incorporated into
Bayesian methods by specifying the prior age distribution of
each ancient sample, rather than assigning a point value (Ho
and Phillips 2009). For several reasons, however, they are usu-
ally ignored in phylogenetic analyses. Uncertain sample ages
need to be estimated in the analysis, which increases the
number of parameters, reduces overall estimation precision,
and leads to the risk of overparameterization.

The possibility of modeling the age uncertainty in ancient
DNA sequences is particularly useful for analyses of layer-
dated samples, which can have very wide errors (Korsten
et al. 2009). It also enables the inclusion of samples that are
beyond the reach of radiocarbon dating and can only be given
a minimum age constraint. The posterior age distributions
can vary greatly from the prior distributions, likely reflecting
the true age of the samples. This also presents a method for
dating samples of unknown or highly uncertain ages (Shapiro
et al. 2011).

Despite the growing use of ancient DNA in population
genetics and phylogeographic research, it is not known
whether uncertainty in the estimates of sample ages has an
impact on molecular estimates of rates and timescales. In this
study, we incorporate the estimated sample-age uncertainty
into Bayesian phylogenetic analyses of 11 published ancient
DNA data sets. We investigate the impact of this uncertainty
on the precision and accuracy of estimates of substitution
rates and divergence times. This allows us to determine
whether estimates of evolutionary timescales can be im-
proved by taking sample-age error into account. We also
examine how the number and ages of the samples used, as
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well as other properties of the data set, affect the power and
reliability of timescale estimation.

Materials and Methods

Data Sets

Eleven ancient DNA data sets were analyzed in our study
(table 1). These were chosen according to two criteria:
1) samples had been dated using radiocarbon and/or layer
dates and 2) strength of the temporal signal in the data set
has been confirmed using the date-randomization test
described later. We chose to use uncalibrated radiocarbon
dates rather than calendar dates, because the former are
easier to model using simple parametric distributions.
Undated samples, as well as those given only minimum radio-
carbon ages (“infinite” dates), were excluded from all analyses.

In the case of 14C-dated samples, we define the error in
sample-age estimation as the standard errors provided by the
dating laboratory. In the case of layer-dated samples, the age
bounds of the assigned layer are taken as the estimation error.
These assume that the layers have been assigned correctly to
the samples but that the exact position of the sample within
its layer is unknown. This is often the case for published data
(e.g., sample age assigned as “Late Pleistocene”). For the sake
of simplicity, we assumed that all sample-dating errors are
uncorrelated among ancient samples. This assumption would
be violated if systematic biases are introduced by contamin-
ation or laboratory errors.

A variety of temporal spans are represented by the data
sets, ranging from 5,400 years in boar to 120,000 years in
brown bear. Most samples were directly dated using 14C.
Only arctic fox (all except one sample), boar, and a single
brown bear individual were layer dated. Estimation errors in
the layer dates are generally higher (average 8% of the age of
the sample) than those in the 14C dates (3%). The boar sam-
ples were dated according to cultural periods (Watanobe
et al. 2001, 2004). The arctic fox samples were dated by strati-
graphic horizons, the ages of which were estimated using 14C
dating of associated organic material (Dalén et al. 2007).
Sample sizes and alignment lengths vary among data sets,
ranging from 23 to 182 cave lion and bison sequences, re-
spectively, and 193 to 682 nucleotides in brown bear and
musk ox, respectively (table 1).

The Effect of Sample-Dating Errors on Bayesian
Parameter Estimates

The best-fit model of nucleotide substitution was chosen for
each data set using the Bayesian information criterion, calcu-
lated using ModelGenerator (Keane et al. 2006). Compared
with other model-selection criteria, the Bayesian information
criterion has been shown to perform well under a variety of
scenarios (Luo et al. 2010). Because of the intraspecific char-
acter of the data, substitution models containing invariant
sites were excluded. At the population level, the proportion of
invariant sites is typically overestimated because these sites
are difficult to distinguish from those that simply have not yet
changed.

For each data set, we determined whether the temporal
span of the sample dates and the DNA sequence information
were sufficient for calibrating rate estimates. This was done
using a date-randomization test, described in previous studies
using time-stamped sequences (Ramsden et al. 2009; Firth
et al. 2010; Ho, Lanfear, Phillips, et al. 2011). We performed
the test using 10 replicates of each data set. Following Firth
et al. (2010), the sampling times in a data set were considered
to have sufficient temporal structure and spread when the
mean estimate of the evolutionary rate was not included in
any of the 95% highest posterior density (HPD) intervals of
the rate estimates from the date-randomized replicates.
Eleven data sets met this condition and were used for further
analysis (results of the test for these data sets are given on
supplementary fig. S1, Supplementary Material online). Data
sets are listed in table 1.

To determine whether the incorporation of sample-age
uncertainty reduces the precision of estimates of timescale
parameters, Bayesian phylogenetic analyses were performed
using BEAST v1.6.1 (Drummond and Rambaut 2007).
Uninformative priors, given in the form of uniform distribu-
tions ranging from 0 to infinity, were assigned to the evolu-
tionary rate and population size. For each data set,
constant-size and Bayesian skyride models of population his-
tory were compared using Bayes factors (Suchard et al. 2001).
Analyses were first performed with point values for the
sample ages (“point calibrations”). For layer-dated samples,
the midpoint of the source layer was used as a point estimate.
A second analysis was performed with informative prior
distributions (“non-point calibrations”) of the ages of
ancient DNA sequences (Shapiro et al. 2011). For each radio-
carbon-dated specimen, the age was assigned a normal
prior with a standard deviation equal to the standard
error of the 14C date. Uniform priors were specified for
the ages of layer-dated samples, with minimum and max-
imum constraints chosen according to the time period
spanned by the layer. For data sets containing only ancient
samples, the age of the youngest sample was used as a point
calibration. Median estimates and 95% HPD intervals of sub-
stitution rates and root ages were compared between the
treatments involving point calibrations and nonpoint
calibrations.

A strict-clock model was used in all analyses owing to the
intraspecific level of study. Rate variability among intraspecific
lineages is assumed to be stochastic rather than driven
by evolutionary processes (Drummond et al. 2006; Ho
2009). For shallow phylogenies, relaxed-clock models gener-
ally do not outperform strict-clock models, whereas they
reduce the precision of parameter estimates (Brown and
Yang 2011).

Posterior distributions of parameters were estimated using
Markov chain Monte Carlo (MCMC) sampling. Each analysis
was run 10 times, with samples drawn every 103 steps over
107 steps. Results from the 10 replicates were combined using
LogCombiner (Drummond and Rambaut 2007), with the first
106 steps of each run discarded as burn-in. Samples from the
posterior were checked for acceptable effective sample sizes
(>200) and for convergence and mixing by visual inspection
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of MCMC traces in Tracer v1.5 (Rambaut and Drummond
2007). When these were not satisfactory, the MCMC analysis
was continued until adequate sampling had been achieved.

To determine whether the 95% HPD intervals of the esti-
mated parameters differed significantly between point-
calibrated analyses and those incorporating uncertainty in
the sample ages, we performed Wilcoxon signed-rank nondir-
ectional tests. Pairs of 95% HPD interval sizes for substitution
rate and root age estimates for each data set were compared
between the analyses using point and nonpoint calibrations.

To determine which features of the data sets had the
greatest effect on parameter estimates, we conducted an ana-
lysis of variance for linear regression using the statistical soft-
ware R (R Development Core Team 2012). Sizes of 95% HPD
intervals for substitution rate and root age estimates were
tested against the following features: range of sample ages,
number of variable sites, alignment length, sequence variabil-
ity (fraction of variable sites), number of sequences, fraction of
ancient samples in the data set, mean age of all samples, and
mean age of nonmodern samples (see supplementary table
S1, Supplementary Material online, for all parameter values).

The Effect of Different Prior Distributions for
Sample Ages

To provide further insight into the effect of including the
uncertainty in sample ages on Bayesian estimates of evolu-
tionary timescales, we performed additional analyses on two
of the data sets. We focused on the largest available data set
(bison) and the smallest data set that contains both ancient
and modern samples (arctic fox). Thus, we covered the two
extremes of the size range of data sets in this examination.

We assigned artificial dating errors to the ancient samples,
including a range of normal and uniform prior distributions
(fig. 1). Six analyses were performed for each data set. In each
analysis, a single type of artificial error was applied to all the
ancient samples. We used normal prior distributions to mimic
radiocarbon-dating uncertainty, with standard deviations of
10% and 5% of the sample age (fig. 1a and b). Uniform dis-
tributions reflect layer dating where the width of the layer is
either 10% or 5% of the sample age. The uniform distribution
is centered on the true age of the sample (fig. 1c and d). The
effect of different within-layer positions of the specimens was
investigated by shifting the uniform prior, so that the true
sample age was near either the minimum or the maximum
bound (fig. 1e and f).

Bayesian phylogenetic analyses were performed using the
various calibrations described earlier. The settings for the ana-
lyses were the same as those described in the previous section.
We obtained posterior estimates of substitution rates, root
ages, and sampling times.

The Amount of Information Required to Calibrate
the Molecular Clock

We investigated the relationship between the number and
temporal spread of dated samples and the performance of
Bayesian phylogenetic estimation of rates and timescales.
Here, we focused on the brown bear data because theyT
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include a large number of both ancient and modern se-
quences (47 and 66, respectively). Apart from a single
sample dated at 120,000 years, the ancient sequences are
almost uniformly distributed over the past 50,000 years.
These characteristics make the brown bear sequences a
good data set for investigating whether and how the use of
samples of varying ages for calibration influences parameter
estimates.

Bayesian phylogenetic analyses were conducted using
BEAST as described earlier, except that we excluded the ma-
jority of the ancient samples and used only one or three
ancient sequences to calibrate the parameter estimates. The
analysis with one ancient sequence included 1) the oldest
sample (120,000 years), 2) the sample with age closest to
10% of the age of the oldest sample (11,940 years), or
3) the sample with age closest to 1% of the age of the
oldest sample (1,550 years) (supplementary fig. S2,
Supplementary Material online). The analysis with three an-
cient samples included 1) the three oldest sequences, 2) the
three sequences of intermediate age, 3) the three youngest
sequences, or 4) one sequence from each of the three age
categories (supplementary fig. S2, Supplementary Material
online). Samples from the posterior were drawn every 2,000
steps over 2� 107 steps. The first 106 steps of each run were
treated as burn-in. Ten replicate analyses were performed,
and the samples from the posterior were combined.

In practice, limits on the accuracy of radiocarbon dating
mean that few data sets include DNA sequences that exceed
50,000 years. Accordingly, we repeated some of the analyses
after excluding the 120,000-year sample. These additional ana-
lyses included those with only one or three ancient sequences.

In an additional round of analyses, we randomly removed
an increasing number of ancient DNA sequences from the
brown bear data set. This was done to examine the effect of
using only a small number of sampling times for molecular
clock calibration. We analyzed 17 data subsets of varying size,
comprising the 66 modern samples and a decreasing number
of ancient DNA sequences. To account for sampling effects,
we performed three replicates of each analysis, with ancient
sequences chosen randomly each time. Pruned data sets were
analyzed using BEAST, with the settings described earlier.

To test whether the results from this analysis were applic-
able beyond the brown bear data, we performed a simulation
study. Using BayeSSC (Excoffier et al. 2000; Anderson et al.
2005), we simulated sequence evolution to produce data sets
comprising 50 modern and 50 ancient samples. Simulations
were conducted using three different evolutionary rates
(2� 10�7, 5� 10�7, and 10�6 substitutions/site/year), con-
stant population size, and the HKY substitution model
with � = 20 (transition/transversion bias = 0.909). The 50 an-
cient samples were drawn at 1,000-year intervals from 1,000
to 50,000 years before present.

For each of the simulated data sets, we conducted phylo-
genetic analyses after randomly removing an increasing
number of ancient DNA sequences. To account for sampling
effects, we performed three replicates of each analysis, with
ancient sequences chosen randomly each time. Data sets
were analyzed using BEAST as described earlier.

Results

The Effect of Sample-Dating Errors on Bayesian
Parameter Estimates

In most cases, incorporating the uncertainty in sample ages
did not substantially affect estimates of either substitution
rate (fig. 2a) or root age (fig. 2b). The 95% HPD intervals of
the posterior rate estimates changed by more than 5% for
only three of the 11 data sets (increase of 7% in bison, 53% in
boar, and 6% in reindeer). The 95% HPD intervals for root age
estimates changed noticeably in only two data sets (17% de-
crease in cave lion and 14% increase in reindeer). The
Wilcoxon signed-rank test did not indicate any effect of incor-
porating sample age uncertainties on estimates of substitu-
tion rates (P = 0.054) or root ages (P = 0.610). A regression
analysis revealed no significant relationships between the
performance of Bayesian parameter estimation and the
characteristics of the data sets (supplementary table S2,
Supplementary Material online).

The Effect of Different Prior Distributions for
Sample Ages

Assigning artificial errors to the ancient DNA sequence ages
did not influence estimates of substitution rate and root age
for the arctic fox data set (fig. 3a and b). The 95% HPD
intervals of the rate estimate changed (relative to estimates
made using point calibrations) by more than 5% only when a
prior distribution of N(0.9t, 1.1t) was used for the sampling
times. The 95% HPD intervals of root-age estimates did not
change by more than 4% for any level of sample-dating error.

The bison data set was more affected by the introduction
of uncertainties in the sampling times (fig. 3c and d). The 95%
HPD interval of the estimate of the substitution rate increased
for most error levels except for calibrations with prior distri-
butions U(0.95t, 1.05t) and U(0.91t, 1.01t). For the 95% HPD
intervals of root-age estimates, the only significant change
was a decrease when the sample-dating uncertainty was
N(0.9t, 1.1t).

We inspected the marginal posterior densities of
sample-date estimates when arbitrary prior distributions
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were used to model the uncertainty in sampling times. For
some sequences, the posterior distributions of the sampling
times differed noticeably from the specified prior distributions
(supplementary fig. S3, Supplementary Material online).

The Amount of Information Required to Calibrate
the Molecular Clock

In Bayesian phylogenetic analyses of the brown bear data,
changes in the number and age of ancient DNA sequences
affected the performance of parameter estimation. Including

only one or three ancient sequences in the analysis led to a
substantial reduction in the precision of most estimates of
substitution rate (fig. 4a) and all root-age estimates (fig. 4b).
However, the distribution of sequence dates had a crucial
impact on the analysis. For some of the older samples
(120,000 years and 50,800 years), the precision of substitution
rate estimation with only one sequence was comparable to
that obtained using the whole data set. Younger samples
produced estimates with much wider 95% HPD intervals.
Estimates using three old samples (regardless of whether
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the 120,000-year sequence was included or excluded) were of
comparable precision to the one using samples from all three
age categories. Root-age estimates were poor when there was
a reduced number of ancient DNA sequences in the analysis.

When we sequentially pruned ancient sequences from the
brown bear data set, the performance of rate estimation only
started to decline when fewer than 16 of the initial 47 ancient
samples remained in the analysis (fig. 5a). However, a sub-
stantial drop in estimation performance was found only when
4–5 ancient samples remained in the data set, with consid-
erable variability among the three replicates. A similar pattern

was observed for estimates of the root age, although the de-
cline in performance was more gradual (fig. 5b).

Similar results were obtained from the simulation study
(supplementary figs. S4 and S5, Supplementary Material
online). The performance of the method in estimating rates
and root ages did not substantially differ from the analysis of
the full data set (50 ancient and 50 modern sequences) until
fewer than six ancient sequences were included. This result
was independent of the rate of evolution used for simulating
sequence evolution. The temporal information in data sets
containing fewer than five ancient samples, with a simulated
rate of 2� 10�7 substitutions per site per year, was in a few
cases insufficient to allow parameter estimation. The simu-
lated rate and root age fell within the 95% HPD intervals of
the respective estimates in 99% and 93% cases.

Discussion
Time-stamped DNA sequences offer a useful source of cali-
brating information for molecular clocks, especially for intra-
specific analyses. However, age estimates of samples are not
free from error. We hypothesized that this source of error
might detrimentally affect the precision of timescale esti-
mates. Our results show, however, that incorporating age
uncertainty into these analyses has minimal impact on phylo-
genetic estimates of substitution rates and divergence times,
at least for data sets comprising samples with a wide age
range and small dating errors (fig. 2). The only data set to
show a substantial reduction in estimation performance is the
boar, which comprises young sequences (oldest sample dated
at 5,400 years) with large uncertainties in the sample ages (8%
on average and up to 20%). These uncertainties stem from
the dating method employed; the boar samples were dated
using cultural context with a broad age range for each hori-
zon, spanning up to 1,500 years (Watanobe et al. 2004).

The minimal impact of incorporating sample-dating error
was also evident when different arbitrary levels of dating error
were introduced to the analysis (fig. 3). Although the artificial
errors (up to 10% of the sample age) were generally higher
than real sample-dating errors (on average 8% of the mid-
point ages for layer dates and 3% for radiocarbon dates), they
had only a negligible effect on the results. The precision of
substitution rate estimates was generally reduced (wider 95%
HPD intervals) when age uncertainties were incorporated;
however, for the arctic fox data set, this decrease was smaller
than the level of uncertainty in the prior distributions. The
bison data set was more affected by introducing errors, prob-
ably owing to the much higher proportion of ancient se-
quences (88%) and larger temporal span (60,400 years)
than in the arctic fox data set (16% and 16,000 years, respect-
ively). The largest increase in the 95% HPD interval of the rate
estimate was 23%, for a sample-dating error of N(0.9t, 1.1t).
In comparison, in our sample-pruning analysis of brown bear
(fig. 5), choosing two random sets of 30 ancient sequences
(from the 47 available; with 66 modern sequences) resulted in
95% HPD intervals differing by up to 27% in size. For data sets
with 25 ancient sequences, there was an increase of up to
55%. These results show the effects of the choice (or, more
typically, availability) of samples, which has a larger impact on
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FIG. 4. Bayesian parameter estimates of sets of brown bear samples
including a varying number of ancient samples. The graph presents
the median estimates and 95% HPD intervals of (a) substitution rate
and (b) root age. Analyses were calibrated using all 66 modern samples
and n = 47, n = 3, or n = 1 ancient sequences. In schemes n = 3 and n = 1,
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three age categories. Ages of sequences are given in supplementary
figure S2, Supplementary Material online. For the comparison of esti-
mation performance, estimates using all 47 ancient sequences, both
with nonpoint (distributed) and point calibrations, are shown. Values
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parameter estimates than incorporating sample-dating
uncertainties.

When sample ages were estimated in the phylogenetic
analysis, posterior mean values were not always consistent
with the ages determined by 14C or layer dating. Some of
the posterior distributions of the sample dates were skewed
toward the boundaries of the prior distributions (supplemen-
tary fig. S3, Supplementary Material online). This could be
caused by a number of factors, including erroneous sample
dates, sequence contamination, damage-driven errors in the
DNA, violation of the assumption of panmixia by the coales-
cent model, or inadequate modeling of among-lineage rate
variation (Shapiro et al. 2011).

Converting radiocarbon years to calendar years is of
interest to most research involving estimating phylogenetic
timeframes. In view of the results of our analyses, the add-
itional uncertainty introduced by converting dates might
have little effect on substitution rate estimates. For example,
in an analysis of 578 Late Pleistocene herbivore samples, the
mean standard error for radiocarbon and calendar dates
was 1.48% and 1.55%, respectively (Lorenzen et al. 2011).
Minimum and maximum sample-dating errors in the
data set were 0.25% and 10.75% for radiocarbon dating and
0.36% and 12.65% for the calendar ages, respectively.
Therefore, we believe that our findings using radiocarbon
dates can be extrapolated to analyses using calendar dates.
Additional sources of uncertainty associated with dating sam-
ples, such as contamination or the choice between marine
and terrestrial calibration curves, should still be taken into
consideration.

A number of data set characteristics, such as the number
of samples, length of alignment, and sampling time span, were

tested for relationships with the performance of phylogenetic
timescale estimation. No significant relationships were found
(supplementary table S2, Supplementary Material online).
This might be due, in part, to the limited number of data
sets included in our study but might also indicate that esti-
mation performance is influenced by a combination of many
factors (some of which might not have been taken into ac-
count in this analysis) rather than one single factor.

Our study shows that even a small number of ancient
DNA sequences can produce estimates of substitution rates
of comparable precision to those obtained from larger data
sets, provided that the sequences are of sufficient age (figs. 4
and 5). Furthermore, provided that old sequences are
included in the analysis, the age distribution of ancient sam-
ples used (i.e., whether they cluster around one time point or
are of highly diverse ages) does not seem to influence the
precision of substitution rate estimates; this is consistent with
the findings of a previous simulation study (Ho et al. 2007).
Compared with estimates of substitution rates, estimates of
root age appear to be less robust to a reduction in calibration
information and perform poorly with a restricted number of
time-stamped sequences. Nevertheless, all our analyses (each
comprising 50 or more modern samples) show that including
six ancient DNA sequences is enough to calibrate the mo-
lecular clock (fig. 5 and supplementary figs. S4 and S5,
Supplementary Material online). Increasing the number of
sequences improves estimates of substitution rate and root
age until a certain threshold, after which additional sequences
do not lead to a noticeable improvement in estimates.
A recent study by Dodge (2012) has also shown that a rela-
tively small number of samples can be sufficient to estimate
model parameters in a Bayesian phylogenetic framework.
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However, the ages of the samples are important. In addition,
the individual properties of each data set, such as the genetic
variability of sequences, will affect the number of samples
required for reliable estimates of substitution rates and
timescales.

Conclusion
Our study shows that incorporating sample-dating errors into
phylogenetic estimates generally has a negligible impact on
estimates of substitution rate and divergence times. However,
high levels of sample-dating uncertainty, such as those arising
from layer dating of relatively young samples, can severely
decrease the performance of phylogenetic analysis. We have
also shown that, to obtain accurate and precise estimates of
molecular evolution rates and timescales, it is not strictly ne-
cessary to have a large data set. A modest number of samples
with widely distributed and well-determined ages can be suf-
ficient. Under these conditions, accounting for sample-dating
errors might not be a critical step in the analysis.

Supplementary Material
Supplementary tables S1 and S2 and figures S1–S5 are avail-
able at Molecular Biology and Evolution online (http://www
.mbe.oxfordjournals.org/).
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