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Ancient DNA Reveals Genetic Continuity in Mountain Woodland Caribou
of the Mackenzie and Selwyn Mountains, Northwest Territories, Canada
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ABSTRACT. We examine the mitochondrial genetic stability of mountain woodland caribou (Rangifer tarandus caribou)
in the Mackenzie and Selwyn mountains, Northwest Territories, over the last 4000 years. Unlike caribou populations in the
Yukon, populations in the Northwest Territories show no evidence for mitochondrial genetic turnover during that period, which
indicates that they were not adversely affected by the widespread deposition of the White River tephra around 1200 years ago.
We detect moderate genetic differentiation between mountain woodland and barren-ground caribou in both territories, lending
support to the current subspecies designations. In addition, we identify moderate genetic differentiation between Northwest
Territories and western Yukon mountain woodland caribou, suggesting that there has been minimal mixing of matrilines
between these herds.
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RESUME. Nous examinons la stabilité génétique mitochondriale des caribous des bois des montagnes (Rangifer tarandus
caribou) qui ont évolué dans les monts Mackenzie et dans la chaine de Selwyn, Territoires du Nord-Ouest, ces 4 000 derniéres
années. Contrairement aux populations de caribou du Yukon, les populations de caribou des Territoires du Nord-Ouest ne
montrent aucun signe de rotation génétique mitochondriale pendant cette période, ce qui indique qu’ils n’ont pas été affectés de
maniére défavorable par le dépot a grande échelle du téphra de la riviere White, il y a environ 1 200 ans. Nous détectons une
différentiation génétique modérée entre le caribou des bois des montagnes et le caribou de la toundra dans les deux territoires,
ce qui vient appuyer les désignations actuelles de sous-especes. Par ailleurs, nous avons dénoté une différenciation génétique
modérée entre le caribou des bois des montagnes des Territoires du Nord-Ouest et celui de 1’ouest du Yukon, ce qui laisse

croire qu’il y aurait eu peu de mélanges matrilinéaires entre ces troupeaux.

Mots clés : plaque de glace, troupeau de Redstone, écotype, téphra de la Riviére White, mitochondrial, toundra

Traduit pour la revue Arctic par Nicole Giguére.

INTRODUCTION

Caribou (Rangifer tarandus) have inhabited the Arctic
since the Pleistocene (Flagstad and Reed, 2003). After the
last glacial maximum, the barren-ground and woodland
caribou of Alaska and Canada expanded out of Beringia
into their current ranges (Zittlau, 2004). Anthropogenic
habitat fragmentation is now placing unprecedented pres-
sure on the mountain woodland caribou, leading the Cana-
dian government to classify the southern mountain caribou
as threatened and the northern mountain caribou as a spe-
cies of special concern (Bergerud, 1974; COSEWIC, 2002;
McLoughlin et al., 2003).

Caribou are holarctic in distribution, ranging across
North America, Greenland, Europe, and Siberia. They form
herds of dozens to hundreds of thousands of individuals,

depending on ecotype. In the Canadian Yukon Territory
(YT) and Northwest Territories (NWT), three subspecies
are recognized (Flagstad and Reed, 2003). The barren-
ground caribou (Rangifer tarandus groenlandicus in the
NWT; R. t. granti in the YT and Alaska) inhabit the open
tundra, sometimes forming herds of hundreds of thousands
of individuals. These herds are known to migrate as far as
4000 km between seasonal ranges (Zittlau, 2004). In con-
trast, woodland caribou (R. t. caribou) form smaller herds
that inhabit the boreal forests. Depending on their habitat,
these herds are considered either mountain woodland or
boreal woodland caribou (Olsen et al., 2001).

Along the YT-NWT border, several mountain wood-
land caribou herds inhabit the areas around and within the
Mackenzie and Selwyn mountains (Fig. 1; Yukon Geomat-
ics, 2008). During calving season, these herds are largely
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FIG. 1. Ranges of the caribou herds represented in this study. Mitochondrial
DNA is available from the Redstone, Wolf Lake, Ibex, Aishihik, and Forty-
mile herds (Table 1). Ranges for the neighbouring herds of Bonnet Plume,
Nahanni, Finlayson, and Tay River are also shown. The circles represent
ancient ice patch specimens, and the triangles represent modern specimens.
Closed symbols (A, @) represent the locations of new specimens, while open
symbols (A,O) represent those of sequences acquired in previous studies.

isolated from one another. However, genetic analyses sug-
gest that these herds may actually function as a single large
herd, or metapopulation (Zittlau, 2004). Understanding the
relationships between these herds has important conse-
quences, as long-term caribou conservation policy should
be based on metapopulation dynamics rather than herd
dynamics (Hinkes et al., 2005).

During the summer months, caribou are known to use
perennial alpine ice patches to keep cool and escape insect
harassment (Ion and Kershaw, 1989). These ice patches
are continuously replenished by snowfall during the win-
ter and are effectively permanent, although recent surveys
have shown they are shrinking in the Yukon (Farnell et al.,
2004). Numerous ice patches have been discovered within
the current caribou range in the YT and NWT, including
several in the Mackenzie and Selwyn mountains (Andrews
et al., 2012). These ice patches preserve a record of local
caribou occupation over thousands of years in the form of
dung and bones incorporated into the ice layers (Farnell
et al., 2004; Andrews et al., 2012). Radiocarbon dating of
fecal material from the NWT ice patches revealed the con-
tinuous presence of caribou in the region over the last 4500
years (Andrews et al., 2012).

Recently, melt-out of the ice patches released bones that
had been frozen since deposition, providing the opportu-
nity to use ancient DNA (aDNA) techniques to examine
the population dynamics of caribou in this region through
time. Ancient DNA can permit the direct observation of
how populations responded to past periods of environmen-
tal change (Leonard, 2008). Such information can provide
a crucial temporal perspective, which has been shown to
facilitate the most effective conservation strategies (Willis
and Birks, 2006).

We use ancient mitochondrial DNA isolated from bones
recovered from the NWT ice patches to infer the recent
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evolutionary history of the caribou populations from
these regions. Mitochondrial DNA is a maternally inher-
ited genetic locus that is favoured in ancient DNA analy-
ses because (1) it is at a much higher copy-number per cell
than is nuclear genetic DNA, and therefore it is much more
likely to be preserved through time (Willerslev and Cooper,
2005); and (2) it does not recombine, and therefore the evo-
lutionary history of this locus is relatively simple to infer
compared to that of nuclear genetic loci (Rokas et al., 2003).

We address four questions about the recent popula-
tion dynamics of caribou in the Mackenzie and Selwyn
mountains. First, we assess whether the mountain wood-
land caribou in the central Mackenzie and Selwyn moun-
tains, NWT, comprise a single, large herd: the Redstone
herd (Fig. 1). If this is the case, we expect to find a single,
homogenous population. Alternatively, the traditional Red-
stone herd could be a metapopulation composed of several
herds sharing a common range (Olsen et al., 2001). In this
case, we expect to see distinct genetic clusters related to the
geographic proximity of the individuals.

Second, we address the temporal stability of the NWT
mountain woodland caribou populations. We propose that
ancient caribou using the NWT ice patches are the ances-
tors of the modern Redstone herd. This assumes that the
deposition of the White River tephra (volcanic ashfall)
around 1200 years ago (Froese et al., 2007) did not force
caribou to move out of the area, as has been shown for cari-
bou living in the Southern Lakes region, YT, where more
ash was deposited than in the NWT (Lerbekmo, 2008;
Kuhn et al., 2010).

Third, we explore whether or not the mountain woodland
caribou of the NWT and of YT are genetically distinct from
one another. It has been proposed (Kuhn et al., 2010) that
the ancient caribou populations that previously resided in
the southwestern YT (Fig. 1) are genetically distinct from
the populations currently residing in the same area of the
YT. If the ancient NWT mountain woodland caribou are
genetically distinct from the ancient YT caribou, but not
from the modern YT caribou, then the NWT mountain
woodland caribou could represent a potential source popu-
lation for the modern YT caribou.

Fourth, we test for genetic differentiation corresponding
to ecotype within the region—mountain woodland form
(R. t. caribou) vs. continental tundra form (R. 7. groen-
landicus, Canadian barren-ground; R. t. granti, Alaska
caribou)—and between subspecies within the NWT (R. ¢.
groenlandicus v. R. t. caribou). We expect to see no genetic
differentiation, as previous studies have failed to identify
mitochondrial differentiation between these ecotypes or
subspecies (Flagstad and Reed, 2003; Kuhn et al., 2010).
We propose that this lack of differentiation is not a mod-
ern phenomenon, and that the two ecotypes either shared a
very recent common ancestor or have undergone considera-
ble recent admixture. However, genetic differentiation may
exist, as herds belonging to each of the two ecotypes are
unlikely to experience significant mixing.
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MATERIALS AND METHODS
Sample Collection

Between 2005 and 2008, 17 caribou bones and teeth
were collected from 11 ice patches in the Mackenzie and
Selwyn mountains of the western NWT, Canada, along the
border with the YT (Andrews et al., 2012). A modern antler
was also collected from an ice patch and sampled for DNA.
Radiocarbon (*C) dates on ancient specimens yielded ages
ranging from a few hundred to almost 4000 years (Table 1).
Dates are reported as radiocarbon years before present
(BP), calibrated with the IntCal09 curve (Reimer et al.,
2009) using CALIB 6.0 (Stuiver and Reimer, 1993).

To assess changes in the mitochondrial genetic diversity
of caribou living in the region over time, we obtained 38
hair samples from the Northwest Territories Department
of Environment and Natural Resources that had been col-
lected from caribou killed in defined outfitter (hunting)
zones (Fig. 2). Although none of the hair specimens we
obtained were attributed to any particular herd, they likely
belonged to one of three: the mountain woodland Red-
stone herd, whose range overlaps all outfitter zones and
ice patches from which samples were obtained; the Bonnet
Plume herd, which is present in the western part of outfit-
ter zone S/OT/01; and the Carcajou herd, which may overlap
the eastern part outfitter zone S/OT/01.

The ice patches yielding ancient caribou remains fall
mainly within the Ram Head outfitter zone S/OT/03, from
which we obtained 10 modern samples. The study area over
which ice patches have been discovered also includes the
Mackenzie Mountain outfitter zone S/OT/02 (represented in
our study by 9 modern samples) in the north, and the NWT
outfitter zone S/OT/04 (represented by 9 modern samples)
in the south. The Gana River outfitter zone S/OT/01 (rep-
resented by 4 modern samples) borders the study area to
the north, while the Redstone outfitter zone S/OT/05 (rep-
resented by 4 modern samples) borders the study area to
the southeast. No samples from the Nahanni Butte out-
fitter zone (D/OT/02) or the South Nahanni outfitter zone
(D/OT/01) were available.

Sample Processing

DNA Extraction from Ancient Specimens: We pro-
cessed all ancient samples following standard protocols
for working with ancient DNA (Cooper and Poinar, 2000).
For example, we performed all DNA extraction and pre-
amplification steps in a sterile, dedicated laboratory that is
spatially isolated from other molecular biology research at
the Pennsylvania State University. We used multiple neg-
ative controls during both the DNA extraction and PCR
phases, and we cloned samples to assess both DNA damage
and contamination by exogenous sources.

We prepared powder samples from ancient bones and
teeth using a Dremel tool equipped with a cutting disk and
a Mikrodismembrator (B. Braun Biotech International) for

pulverization. We extracted DNA following a silica-based
protocol (Rohland et al., 2669), using no more than 500 mg
of bone powder from each sample. We eluted the aDNA
extracts in a final concentration of 50ul of TE buffer.

DNA Extraction from Modern Specimens: We pro-
cessed the hair sampled from living caribou in the modern
molecular biology facility after all ancient caribou work
had been completed, so as to avoid the possibility of con-
tamination of ancient extracts with modern caribou DNA.
We use the Qiagen DNeasy Blood and Tissue kit (Qiagen,
Inc.) with several modifications to more efficiently digest
hair: we doubled the amount of lysis buffer ATL, increased
the amount of proteinase K from 20 pl to 30 ul, and added
20 pl of IM DTT to promote lysis of the hair shafts. Incu-
bation was carried out overnight at 56°C. Because of the
increased volume of the extraction mixture, it was also
necessary to double the amount of buffer AL and ethanol
during the silica-binding and wash phases. Samples were
eluted in 150 pl of buffer TE.

DNA Amplification from Ancient Specimens: We
amplified the entire 564 bp (base pair) fragment of cari-
bou mitochondrial control region hypervariable seg-
ment 1 using a single primer pair (CBF1I/CB5R; Kuhn
et al., 2010). Prior to amplification, we added 2 pl of
Tween 20 (Sigma-Aldrich) to each ~50 pl extract. We
performed PCR in 25 pl reactions using Platinum Taq
High Fidelity DNA polymerase (Invitrogen), with
the following components and final concentrations:
2 mM MgSO,, 250 uM dNTPs, 1 uM primers, 2 mg/ml
rabbit serum albumin (Sigma-Aldrich). Cycling condi-
tions were 94°C for 60 s, followed by 55 cycles of 94°C for
30 s, 63°C for 45 s, and 68°C for 45 s. PCR products were
resolved on a 2% agarose gel and visualized using ethidium
bromide and UV transillumination. Amplification was suc-
cessful for all extracts, and no PCR products were observed
in the negative extraction or amplification controls.

To assess DNA damage and screen ancient specimens
for contamination, we cloned all but one sample using the
TOPO TA cloning kit (Invitrogen) according to manufac-
turers’ instructions. Six clones from each sample were
sequenced using the M13F(-20) primer (TOPO manual).

DNA Amplification from Modern Specimens: For the
modern specimens, we amplified the same 564 bp fragment
used in the aDNA analysis. Reactions were performed
in 25 pl reactions using GoTaq Flexi DNA polymerase
(Promega), with the following components and final con-
centrations: 2 mM MgCl2, 250 uM dNTPs, 1 uM prim-
ers. Cycling conditions were 94°C for 60 s, followed by
35 cycles of 94°C for 1 min., 63°C for 1 min., 72°C for 2
min, and a final extension of 72°C for 10 min. Sequenc-
ing of amplified products was performed using CB1F and
two nested sequencing primers CARseqF (5> TAAAC-
TATTCCCTGGCG 3’) and CARseqR (5> AATAGCTAC-
CCCCACAG 3°). All sequencing reactions were performed
using the BigDye v3.1 chemistry (Applied Biosystems) and
resolved on an ABI 3730xI capillary sequencer at the Penn
State Genomics Core Facility (University Park, PA).
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AY178700°
AY178701°
AY178696°
AY178699°
AY178697°
AY178698°
AY178710°

modern
modern
modern
modern
modern
modern
modern
modern
modern
modern
modern

modern
modern
modern
modern
modern
modern
modern
modern
modern
modern
modern

unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown
unknown

Gro20
Gro23
Gro25
Gro26
Gro55
Gro56
Gro59
Gro64
Gro67
Gro68
Gro71

AY178706
AY178707
AY178708
AY178709
AY178700
AY178701
AY178696
AY178699
AY178697
AY178698
AY178710

3 Flagstad and Roed (2003).

R. t. groenlandicus
2 Kuhn et al. (2010).
4 Unpublished.

(NWT)
! This study.

Genetic Analysis

We used the Lasergene Suite (DNAStar) software to
align sequences and checked the alignments by eye in
Se-Al version 2.0all (Rambaut, 2002). To expand the geo-
graphic range of our data set, we obtained 106 additional,
previously published caribou sequences from Genbank,
including 11 NWT barren-ground caribou, 30 YT barren-
ground caribou, and 65 modern and ancient YT northern
mountain woodland caribou (Table 1) corresponding to five
recognized herds (Table 2). The final alignment length was
503 bp.

To identify population structure, we constructed a
median-joining network using Network v4.6.0.0 (Ban-
delt et al., 1999). Twelve sequences (TK31, TK34, TK105,
TK106, TK108, TKI111, TK113, TK45, TK61, AY178708,
AY178701, AY178700) containing ambiguous nucleotides
were not included in the analysis, as recommended by the
Network user manual. In addition, to achieve less than 5%
missing data for each nucleotide position in the alignment,
while maintaining as much data (alignment length) and as
many individuals as possible, seven modern NWT individ-
uals (BL164, BL170, BL172, BL178, BL184, BL189, BL196)
were removed.

To incorporate the spatial and temporal aspect of our
data, we used BEAST v1.6.1 (Drummond and Rambaut,
2007), which allows the explicit use of sample dates in a
coalescent-based genealogical inference framework. We
selected the best-fitting evolutionary model using jMod-
eltest v0.1.1 (Guindon and Gascuel, 2003; Posada, 2008).
BEAST analyses were performed using the HKY model of
nucleotide substitution (Hasegawa et al., 1985) with gamma
distributed rate heterogeneity and assuming a strict molecu-
lar clock and constant population size coalescent prior. We
simulated one MCMC run for 50 million iterations, draw-
ing samples from the posterior every 5000 iterations. We
used Tracer v1.5 (Drummond and Rambaut, 2007) to check
that estimated sample sizes of all parameters were suffi-
cient (ESS > 200) and to verify that the parameter estimates
had reached stationarity. The maximum clade credibility
(MCC) tree was calculated using treeAnnotator, following
removal of the initial 10% of samples as burn-in.

Finally, to measure genetic differentiation between pre-
defined groups, we used Arlequin v3.5.1.2 (Excoffier and
Lischer, 2010) to calculate FST values and to perform a
standard AMOVA (Analysis of MOlecular Variance; Weir
and Cockerham, 1984), which calculates the degree of
genetic variation attributable to among-group differences
and within-group differences. Significance of the AMOVA
was determined using a null distribution obtained from
1023 nonparametric permutations. A Bonferroni correction
for multiple tests was applied. Summary statistics includ-
ing nucleotide diversity (m) and haplotype diversity (k) were
also calculated for many of the groups in Arlequin.
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FIG. 2. The study area in the Mackenzie and Selwyn mountains, NWT, indicating the locations of ice patches, the NWT outfitter zones, and the margins of the

White River tephra (Lerbekmo, 2008).

TABLE 2. Summary of samples analyzed from each herd. Numbers shown below include sequences generated as part of this study and
previously published sequences obtained from GenBank (Table 1).

Subspecies Territory or state Herd (modern) Ecotype (modern) Migratory (modern) N (modern) N (ancient)
R. t. caribou NWT Redstone woodland yes 39 17
YT Wolf Lake woodland no 1 1
YT Aishihik woodland no 12 11
YT Ibex woodland no 11 22
YT Aishihik/Ibex woodland no 0 6
YT Carcross woodland no 1 0
R. t. groenlandicus NWT unknown barrenground yes 11 0
R. t. granti YT and AK Fortymile barrenground yes 18 0
AK unknown barrenground yes 12 0
RESULTS In one case, a nuclear mitochondrial insertion (numt) was

DNA Sequencing Results and Ancient DNA Damage

All new sequences have been deposited in Gen-
Bank under the accessions JF894172-JF894227 (Table
1). No non-caribou sequences were obtained in any clon-
ing reactions, indicating the lack of PCR contamination.

observed. The closest match to this sequence retrieved by
BLAST was an imperfect alignment to white-tailed deer,
and as no deer had previously been handled in this lab, the
sequence was assumed to be a caribou numt. In no case was
the sequence found in other caribou amplifications. Cloning
revealed varying degrees of DNA damage in all specimens,
with an excess of C to T substitutions, as expected from
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cytosine deamination in ancient DNA molecules (Hofreiter
et al., 2001; Gilbert et al., 2006).

Genetic Analysis

To test whether the Redstone herd is actually composed
of multiple herds with overlapping ranges, we examined the
relationships among caribou haplotypes identified by Net-
work and BEAST. Well-defined clades could be indicative
of herd fidelity. The median-joining network (Fig. 3) and
the MCC tree (Fig. 4) revealed very little genetic structure
in YT and NWT caribou.

To test the next three hypotheses, we performed FST
and AMOVA calculations to examine the degree of genetic
differentiation between predefined groups (Table 3). To
assess whether ancient caribou from the ice patches are the
ancestors of the modern Redstone herd, we compared all
ancient (ice patch samples older than modern) NWT cari-
bou to all modern NWT mountain woodland caribou. An
FST score of 0.042 indicated little differentiation between
the two groups. The AMOVA suggested that ancient and
modern NWT caribou were not significantly differentiated
(p = 0.0645) and that the majority of variation was due to
within-group diversity (96%), rather than to between-group
differentiation. Furthermore, haplotype diversity (%) in the
NWT mountain woodland caribou did not change through
time (ancient 2 = 0.923, modern z = 0.963, Table 4). On the
basis of these results indicating that the NWT population
is not significantly differentiated through time, all NWT
mountain woodland caribou were treated as a single popu-
lation for all subsequent analyses.

To test whether NWT caribou were affected by the
deposition of the White River tephra, we again assumed
two subpopulations, representing caribou living in the
region before and after the deposition event around 1200
years ago. No genetic difference was detected between
these two groups using either FST (0.0) or AMOVA (p =
0.4106). To compare our results with those of Kuhn et al.
(2010), we performed a similar set of tests using the pre-
viously published data set of Yukon caribou. In agreement
with their results, we found an FST value of 0.169, indicat-
ing moderate differentiation (Wright, 1978) between cari-
bou inhabiting the Yukon before and after the eruption. An
AMOVA showed that 17% of the total genetic variation was
explained by differences between the pre- and post-erup-
tion groups and was highly significant (p = 0.0). Haplotype
diversity (Table 4) in the caribou inhabiting the area of the
ice patches after the eruption (2 = 0.851) was lower than that
in the population inhabiting the area before the eruption
(h = 0.977). In addition to these results, we found signifi-
cant differentiation (FST = 0.108-0.138, AMOVA p = 0.0,
Table 2) between mountain woodland caribou in the NWT
and both pre- and post-eruption YT populations.

To test whether barren-ground and mountain woodland
caribou ecotypes are genetically distinct from each other
in the NWT, we compared modern barren-ground caribou
to ancient and modern mountain woodland caribou from

GENETIC CONTINUITY IN CARIBOU - 89

the study area. Ancient caribou from the ice patches were
assumed to be woodland, as only mountain woodland cari-
bou use the ice patches during summer months. The two
ecotypes appear significantly differentiated in the NWT (FST
=0.082, AMOVA p = 0.0068). A similar result (FST = 0.041,
AMOVA p = 0.0020) was obtained when all individuals in
the study were included except the pre-eruption YT caribou,
which appear significantly genetically differentiated from all
modern caribou in our study. Both mountain woodland vs.
barren-ground comparisons are significant at p = 0.05 when
Bonferroni correction for 7 tests is applied (p < 0.00714).

DISCUSSION
Redstone Herd Identity

Miller (1982) described a herd as an aggregation of car-
ibou that remained together for at least a major portion of
the year, and in which all breeding females shared an affin-
ity for specific calving grounds not used by females from
other herds. Three mountain woodland herds are defined in
the Mackenzie Mountains of the NWT (Lortie, 1982). From
north to south, they are the Bonnet Plume herd, the Red-
stone herd, and the South Nahanni herd (Fig. 1). The Red-
stone caribou herd is one of the largest woodland herds in
Canada, numbering 5000 to 10000 individuals (Olsen et al.,
2001). The Redstone herd occupies a summer range along
the border with the Yukon near MacMillan Pass. During
the winter, the herd ranges from the eastern slopes of the
Mackenzie Mountains to the Redstone, Keele, and Moose
Horn river basins. However, groups of several thousand ani-
mals have also been observed in this winter range during
July and August (Veitch et al., 2000), which could suggest
that more than one herd is living within the Redstone herd
range. We do not observe any distinct clusters in either the
Network (Fig. 3) or BEAST (Fig. 4) analyses, indicating that
the Redstone herd likely represents a single large, diverse
population. Although no groupings corresponding to outfit-
ter zones are seen, using such large areas as kill localities
may mask the observation of smaller geographic groupings.
In the future, it will be important to record more specific kill
locations, when feasible, in order to determine if any genetic
structure exists within the Redstone range.

The White River Tephra and Caribou Displacement

The White River tephra is an ash layer resulting from the
second Holocene eruption of the Bona-Churchill volcanic
complex in southern Alaska around 1200 years ago (West
and Donaldson, 2002; Froese et al., 2007; Lerbekmo, 2008).
The eruption resulted in an ashfall over as much as one mil-
lion km? of land in Alaska, the Yukon, British Columbia,
and the NWT (Lerbekmo, 2008). The thickness of the ash
ranged from dozens of meters in Alaska to just a few mil-
limeters at its farthest extent near Great Slave Lake, NWT
(Lerbekmo, 2008).
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FIG. 4. Maximum Clade Credibility (MCC) tree from the BEAST analysis described in the text. Stars indicate posterior support values equal to 0.90 or greater.
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TABLE 3. Analysis of Molecular Variance (AMOVA) results for four tests of North American caribou populations. Asterisks indicate
significant values (* = p < 0.05, ** = p <0.01, as determined after Bonferroni correction).

AMOVA
N % of variation explained by diversity

Test per group  FST among-group within-group p-value
Is the NWT woodland caribou population stable through time?

Pre vs. Post Eruption (+47 ka) 6/43 0.000 0 100 0.4106 = 0.0139

Ancient (330-3790 ka) vs. Modern 32/17 0.042 4 96 0.0645 + 0.0074
Is the YT woodland caribou population stable through time?

Pre vs. Post Eruption (+47 ka) 33/32 0.169 17 83 0.0000 + 0.000%**
Are the NWT and YT woodland caribou genetically distinct?
(i.e., Are the NWT woodland caribou a potential source population of the modern YT woodland caribou?)

NWT vs. Post-Eruption YT 49/32 0.138 14 86 0.0000 + 0.000%**

NWT vs. Pre-Eruption YT 49/33 0.108 11 89 0.0000 + 0.000%**
Are the barren-ground and woodland caribou genetically distinct?

All (NWT & < +H4+ ka YT/Alaska) barrenground vs. woodland ~ 42/82 0.041 4 96 0.0020 = 0.0014*

NWT barren-ground vs. NWT woodland 11/49 0.082 8 92 0.0068 + 0.0027*

TABLE 4. Diversity statistics for caribou groups discussed in text. Pre- and post-eruption refer to the White River ashfall around 1200

years ago (ya).

Haplotype Nucleotide
Subspecies Province Group Age range (ya) N! No. haplotypes diversity () diversity (pi)
R. t. caribou NWT modern 0 32 16 0.923 0.017
ancient 3790-394 17 13 0.963 0.016
R. t. groenlandicus NWT all 0 11 11 1.000 0.020
R. t. caribou YT pre-eruption 6489-1904 33 25 0.977 0.013
post-eruption 885-0 32 12 0.851 0.014
R. t. granti YT all 0 30 19 0.961 0.018

! Total is lower than in Table 2 because some individuals with missing data were removed.

An analysis of caribou remains from ice patches in the
southern YT suggested that the ashfall may have displaced
caribou from the Southern Lakes region (Kuhn et al.,
2010). After the ashfall, caribou are not found in the South-
ern Lakes region for 400 years, after which a genetically
distinct population of caribou appears (Table 3). Like the
Yukon ice patches, NWT ice patches were within the depo-
sitional range of the White River tephra (Fig. 2). Our results
indicate, however, that the ashfall had no effect on the sam-
pled NWT caribou, or, if it did, the population recovered
quickly with no introgression from outside caribou herds or
loss of genetic variation (Tables 3, 4). This result is perhaps
not surprising, as caribou are known to dig down or “cra-
ter” for food in snow depths of up to 120 cm (Johnson et al.,
2001). As the layers of ash deposited around the NWT ice
patches were less than 5 cm thick, and the ashfall occurred
when there was already significant snow in the region
(West and Donaldson, 2002), the deposition may have gone
largely unnoticed by these caribou.

Genetic Differentiation between NWT and YT Caribou
Mountain woodland caribou are strongly tied to their

home ranges, and mixing between herds is unlikely without
range overlap (Zittlau, 2004). Studies have also shown that

mountains (Zittlau, 2004) and rivers (McLoughlin et al.,
2004) reduce gene flow in caribou. We therefore expected
to see genetic differences between caribou herds on oppo-
site sides of the Mackenzie and Selwyn mountains. Our
results comparing populations in the YT and NWT indi-
cate significant differentiation at a moderate level between
caribou in the two territories (Table 3). The observed diver-
gence could be the result of the Mackenzie and Selwyn
mountains acting as a barrier to gene flow. However,
because the Redstone herd crosses the mountains each year
(Olsen et al., 2001), it is more likely that the genetic differ-
entiation is a product of the geographic distance between
the caribou herds analyzed here. These herds do not over-
lap in range, and in some cases they are separated by large
distances (Fig. 1). Data from the Tay River and Finlayson
herds, whose ranges overlap that of the NWT Redstone
herd (Fig. 1), are needed for a more robust assessment of
whether the mountains act as a genetic barrier for caribou.
We were also interested in determining whether or not
the NWT mountain woodland caribou could represent a
potential source population for the modern YT northern
mountain woodland caribou that moved into the south-
west YT after the White River ashfall. The NWT mountain
woodland caribou are significantly different from pre-
and post-eruption YT populations occupying the modern
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Aishihik and Ibex herd region (Table 3), making them an
unlikely source population for the modern YT caribou in
the those herds.

Genetic Differentiation Based on Ecotype

The distinction between barren-ground and woodland
caribou is based on lifestyle and morphology (Banfield,
1961). Today, morphology is a controversial means of clas-
sification, as characters such as antler size and shape can
be influenced by factors like variation in nutrition (Geist,
2007). The most obvious difference between the ecotypes
is their lifestyle, with barren-ground caribou generally con-
gregating in massive, migratory herds on the open tundra,
and woodland caribou generally in smaller, sedentary herds
within the boreal coniferous forests.

Three broad mitochondrial haplogroups have been
identified across the holarctic range of the seven Rangi-
fer tarandus subspecies (caribou and reindeer), hypoth-
esized to correspond to three refugia (Flagstad and Reed,
2003). Haplogroup I comprises primarily southern wood-
land caribou (R. ¢. caribou), likely stemming from a south-
ern North American refugium. Haplogroup II contained
some European tundra reindeer (R. ¢. tarandus), possibly
from a western Eurasian refugium. Amnd—the widespread
haplogroup 111 included individuals of all subspecies, but
its primarily northern North American composition indi-
cates a recent Beringian origin (Flagstad and Reed, 2003).
All of the northern woodland haplotypes recovered in this
study and by Kuhn et al. (2010) fall within haplogroup
III. Interestingly, this faet illustrates that the northern and
southern woodland caribou (R. t. caribou) are quite geneti-
cally distinct, as the northern woodland caribou appear
to have originated from a Beringian refugium, along with
the continental tundra forms (R. t. tarandus, granti, and
groenlandicus) and Arctic forms (Svalbard reindeer, R. t.
platyrhynchus, and Peary caribou, pearyi). The genetic
distinction between northern and southern woodland cari-
bou provides further evidence that the present species and
subspecies-level designations are not supported by mito-
chondrial data on a holarctic scale. However, mitochondrial
DNA is only maternally inherited, and bi-parentally inher-
ited nuclear markers may shed more light on the degree of
genetic differentiation between groups.

In contrast, our more focused and extensive sampling
within a single geographic location showed that barren-
ground and mountain woodland caribou populations of the
NWT are significantly genetically differentiated from one
another (Table 3). This finding is consistent with previously
identified allele frequency differences between the two
ecotypes in North America (Cronin et al., 2005). Yet, there
remains a very high degree of mitochondrial haplotype sim-
ilarity between the two ecotypes (Figs. 3, 4), suggesting that
insufficient time has lapsed for complete lineage sorting to
occur within haplogroup III (Flagstad and Reed, 2003).

A low level of mixing between barren-ground and
mountain woodland caribou cannot be discounted to

explain the degree of haplotype similarity observed here.
Barren-ground caribou generally calve on the open tundra
and migrate below the tree line into the boreal forest during
the winter. Given the geographic distance from our study
area to the tree line, which has been east of Great Slave
Lake and Great Bear Lake during the entire period of our
study (Moser and Macdonald, 1990) and north of the Rich-
ardson Mountains, there is little chance of contact between
the mountain woodland caribou in our sampling area and
the barren-ground caribou herds from north of the tree line.
Despite this low probability of contact, stray barren-ground
caribou venturing into the boreal forest as far as our study
region could be responsible for the incomplete differentia-
tion between the ecotypes analyzed here.

CONCLUSIONS

Using ancient and modern DNA isolated from samples
collected from alpine ice patches, we explore the recent
history of the mountain woodland caribou inhabiting the
central Mackenzie and Selwyn mountains of the NWT,
Canada. Our results suggest that the Redstone herd has been
robust to environmental change over the past 4000 years,
having withstood Holocene environmental events without
the loss of genetic variation. We find significant genetic
differentiation between mountain woodland and barren-
ground ecotypes in our study area, and between mountain
woodland caribou in the NWT and YT. It appears that these
ecotypes share a relatively recent common ancestor that
is distinct from southern woodland caribou, but they have
long lived separately, which has led to population genetic
and ecological differentiation. Our mitochondrial results
suggest that the mountain woodland caribou of the NWT
and YT may represent a unique group within Rangifer
tarandus, but further research incorporating more quickly
evolving nuclear DNA markers is required to determine the
extent and significance of this genetic differentiation.
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